【智能优化算法】非洲秃鹫优化算法:一种新的全局优化问题的自然启发的元启发式算法

本文主要是介绍【智能优化算法】非洲秃鹫优化算法:一种新的全局优化问题的自然启发的元启发式算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非洲秃鹫优化算法(AVOA)发表在中科院一区Computers & Industrial Engineering期刊上的论文“African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems"

01.引言

元启发式算法在求解优化问题中起着至关重要的作用。大多数这样的算法都是受到集体智慧和自然界生物觅食的启发。本文以非洲秃鹫的生活方式为灵感,提出了一种新的元启发式方法。该算法被命名为非洲秃鹫优化算法(AVOA),它模拟了非洲秃鹫的觅食和导航行为。为了评估AVOA的性能,首先在36个标准基准函数上进行了测试。然后进行了比较研究,证明了所提出的算法与几种现有算法相比的优越性。为了展示AVOA算法的适用性及其黑箱特性,本文利用AVOA算法对11个工程设计问题求最优解。

0.2.代码流程图

03.部分代码

function [Best_vulture1_F,Best_vulture1_X,convergence_curve]=AVOA(pop_size,max_iter,lower_bound,upper_bound,variables_no,fobj)% initialize Best_vulture1, Best_vulture2Best_vulture1_X=zeros(1,variables_no);Best_vulture1_F=inf;Best_vulture2_X=zeros(1,variables_no);Best_vulture2_F=inf;%Initialize the first random population of vulturesX=initialization(pop_size,variables_no,upper_bound,lower_bound);%%  Controlling parameterp1=0.6;p2=0.4;p3=0.6;alpha=0.8;betha=0.2;gamma=2.5;%%Main loopcurrent_iter=0; % Loop counterwhile current_iter < max_iterfor i=1:size(X,1)% Calculate the fitness of the populationcurrent_vulture_X = X(i,:);current_vulture_F=fobj(current_vulture_X);% Update the first best two vultures if neededif current_vulture_F<Best_vulture1_FBest_vulture1_F=current_vulture_F; % Update the first best bultureBest_vulture1_X=current_vulture_X;endif current_vulture_F>Best_vulture1_F && current_vulture_F<Best_vulture2_FBest_vulture2_F=current_vulture_F; % Update the second best bultureBest_vulture2_X=current_vulture_X;endenda=unifrnd(-2,2,1,1)*((sin((pi/2)*(current_iter/max_iter))^gamma)+cos((pi/2)*(current_iter/max_iter))-1);P1=(2*rand+1)*(1-(current_iter/max_iter))+a;% Update the locationfor i=1:size(X,1)current_vulture_X = X(i,:);  % pick the current vulture back to the populationF=P1*(2*rand()-1);  random_vulture_X=random_select(Best_vulture1_X,Best_vulture2_X,alpha,betha);if abs(F) >= 1 % Exploration:current_vulture_X = exploration(current_vulture_X, random_vulture_X, F, p1, upper_bound, lower_bound);elseif abs(F) < 1 % Exploitation:current_vulture_X = exploitation(current_vulture_X, Best_vulture1_X, Best_vulture2_X, random_vulture_X, F, p2, p3, variables_no, upper_bound, lower_bound);endX(i,:) = current_vulture_X; % place the current vulture back into the populationendcurrent_iter=current_iter+1;convergence_curve(current_iter)=Best_vulture1_F;X = boundaryCheck(X, lower_bound, upper_bound);fprintf("In Iteration %d, best estimation of the global optimum is %4.4f \n ", current_iter,Best_vulture1_F );end
end

04.代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复:智能优化算法本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

这篇关于【智能优化算法】非洲秃鹫优化算法:一种新的全局优化问题的自然启发的元启发式算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878364

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map