LLM端侧部署系列 | 如何将阿里千问大模型Qwen部署到手机上?实战演示(下篇)

本文主要是介绍LLM端侧部署系列 | 如何将阿里千问大模型Qwen部署到手机上?实战演示(下篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 引言

  • 简介

  • 编译Android可用的模型

    • 转换权重

    • 生成配置文件

    • 模型编译

  • 编译apk

    • 修改配置文件

    • 绑定android library

    • 配置gradle

    • 编译apk

  • 手机上运行

    • 安装 APK

    • 植入模型

    • 效果实测

0. 引言

清明时节雨纷纷,路上行人欲断魂。

小伙伴们好,我是《小窗幽记机器学习》的小编:卖青团的小女孩,紧接前文LLM系列。今天这篇小作文主要介绍如何将阿里巴巴的千问大模型Qwen 1.8B部署到手机端,实现离线、断网条件下使用大模型。主要包括以下几个步骤:

  1. 编译Android手机可以使用的Qwen模型

  2. 编译打包APK,为Qwen在Android手机上运行提供用户交互界面

  3. 安装APK和效果实测

如需与小编进一步交流,可以在《小窗幽记机器学习》上添加小编好友。

1. 简介

为将Qwen大模型部署到手机,实现断网下Qwen模型正常使用,本文选择MLC-LLM框架。

MLC LLM(机器学习编译大型语言模型,Machine Learning Compilation for Large Language Models) 是一种高性能的通用部署解决方案,将任何语言模型本地化部署在各种硬件后端和本机应用程序上,并为每个人提供一个高效的框架,以进一步优化自己模型性能。该项目的使命是使每个人都能够使用ML编译技术在各种设备上本机开发、优化和部署AI模型。

以下将以Qwen1.5-1.8B-Chat为例,详细说明如何利用mlc-llm将该模型部署到Android手机上,最终实现每秒约20个token的生成速度。以下命令执行都在mlc-llm的目类下执行。囿于篇幅,将在后文,以上篇名义补充介绍对应的环境安装和配置等工作。

2. 编译Android可用模型

MODEL_NAME=Qwen1.5-1.8B-Chat
QUANTIZATION=q4f16_1

2.1 权重转换

# convert weights
mlc_llm convert_weight /share_model_zoo/LLM/Qwen/$MODEL_NAME/ --quantization $QUANTIZATION -o dist/$MODEL_NAME-$QUANTIZATION-MLC/

通过上述命令,将hf格式的Qwen模型转为mlc-llm支持的模型格式,结果文件存于:dist/Qwen1.5-1.8B-Chat-q4f16_1-MLC

2.2 生成配置文件

# 生成配置文件mlc_llm gen_config /share_model_zoo/LLM/Qwen/$MODEL_NAME/ --quantization $QUANTIZATION --model-type qwen2 --conv-template chatml --context-window-size 4096 -o dist/${MODEL_NAME}-${QUANTIZATION}-MLC/

此时生成的配置文件dist/Qwen1.5-1.8B-Chat-q4f16_1-MLC/mlc-chat-config.json信息:

{"model_type": "qwen2","quantization": "q4f16_1","model_config": {"hidden_act": "silu","hidden_size": 2048,"intermediate_size": 5504,"num_attention_heads": 16,"num_hidden_layers": 24,"num_key_value_heads": 16,"rms_norm_eps": 1e-06,"rope_theta": 1000000.0,"vocab_size": 151936,"context_window_size": 4096,"prefill_chunk_size": 4096,"tensor_parallel_shards": 1,"head_dim": 128,"dtype": "float32"},"vocab_size": 151936,"context_window_size": 4096,"sliding_window_size": -1,"prefill_chunk_size": 4096,"attention_sink_size": -1,"tensor_parallel_shards": 1,"mean_gen_len": 128,"max_gen_len": 512,"shift_fill_factor": 0.3,"temperature": 0.7,"presence_penalty": 0.0,"frequency_penalty": 0.0,"repetition_penalty": 1.1,"top_p": 0.8,"conv_template": {"name": "chatml","system_template": "<|im_start|>system\n{system_message}","system_message": "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.","add_role_after_system_message": true,"roles": {"user": "<|im_start|>user","assistant": "<|im_start|>assistant"},"role_templates": {"user": "{user_message}","assistant": "{assistant_message}","tool": "{tool_message}"},"messages": [],"seps": ["<|im_end|>\n"],"role_content_sep": "\n","role_empty_sep": "\n","stop_str": ["<|im_end|>"],"stop_token_ids": [2],"function_string": "","use_function_calling": false},"pad_token_id": 151643,"bos_token_id": 151643,"eos_token_id": [151645,151643],"tokenizer_files": ["tokenizer.json","vocab.json","merges.txt","tokenizer_config.json"],"version": "0.1.0"
}

2.3 模型编译

# 进行模型编译:# 2. compile: compile model library with specification in mlc-chat-config.jsonmkdir dist/libsmlc_llm compile ./dist/${MODEL_NAME}-${QUANTIZATION}-MLC/mlc-chat-config.json --device android -o ./dist/libs/${MODEL_NAME}-${QUANTIZATION}-android.tar

生成dist/libs/Qwen1.5-1.8B-Chat-q4f16_1-android.tar文件。

3. 编译apk

3.1 修改配置文件

# Configure list of models
vim ./android/library/src/main/assets/app-config.json

./android/library/src/main/assets/app-config.json改为:

{"model_list": [{"model_url": "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat","model_lib": "qwen2_q4f16_1","estimated_vram_bytes": 4348727787,"model_id": "Qwen1.5-1.8B-Chat-q4f16_1"  # 手机上模型目录要跟这个一致,不然无法加载}],"model_lib_path_for_prepare_libs": {"qwen2_q4f16_1": "libs/Qwen1.5-1.8B-Chat-q4f16_1-android.tar"}
}

3.2 绑定android library

需要查看以下系统变量:

echo $ANDROID_NDK   # Android NDK toolchain
echo $TVM_NDK_CC   # Android NDK clang
echo $JAVA_HOME    # Java
export TVM_HOME=/share/Repository/mlc-llm/3rdparty/tvm # mlc-llm 中的 tvm 目类
echo $TVM_HOME     # TVM Unity runtime

是否符合预期。

# Bundle model library
cd ./android/library
./prepare_libs.sh

上述脚本会基于rustup安装aarch64-linux-android,如果比较慢,可以进行如下配置:

export RUSTUP_DIST_SERVER=https://mirrors.tuna.tsinghua.edu.cn/rustup
export RUSTUP_UPDATE_ROOT=https://mirrors.tuna.tsinghua.edu.cn/rustup/rustup

再执行上述脚本。

3.3 配置gradle

修改android/gradle/wrapper/gradle-wrapper.properties, 将原始的内容:

#Thu Jan 25 10:19:50 EST 2024
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.5-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

可以看出,gradle-8.5-bin.zip的路径是:android/gradle/wrapper/dist/gradle-8.5-bin.zip

这里需要注意,wrapper/dists的完整路径其实是/root/.gradle/wrapper/dists修改为:

distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=dist/gradle-8.5-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

需要注意,distributionUrl 这个的base目录其实是mlc-llm目录下的android/gradle/wrapper

3.4 编译apk

# Build android app
cd .. && ./gradlew assembleDebug

编译生成的Android apk 文件位于:app/build/outputs/apk/debug/app-debug.apk

4. 手机实测

4.1 安装 APK

将手机设置成debug模式,数据线连接手机,正常连接之后在电脑执行以下命令,将上面编译出的apk安装到Android手机上:

adb install app-debug.apk

PS: 需要预先在本机电脑上安装 adb 命令。

4.2 植入模型

# 改名,从而适配之前的配置信息
mv Qwen1.5-1.8B-Chat-q4f16_1-MLC Qwen1.5-1.8B-Chat-q4f16_1# 将模型文件推送到手机的 /data/local/tmp/ 目类
adb push Qwen1.5-1.8B-Chat-q4f16_1 /data/local/tmp/adb shell "mkdir -p /storage/emulated/0/Android/data/ai.mlc.mlcchat/files/"adb shell "mv /data/local/tmp/Qwen1.5-1.8B-Chat-q4f16_1 /storage/emulated/0/Android/data/ai.mlc.mlcchat/files/"

4.3 聊天实测

实测大约1s可以生成20个token。

这篇关于LLM端侧部署系列 | 如何将阿里千问大模型Qwen部署到手机上?实战演示(下篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/877002

相关文章

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到