使用自己训练的superpoint与superglue模型进行图像配准

2024-04-04 21:36

本文主要是介绍使用自己训练的superpoint与superglue模型进行图像配准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于官方团队发布的预训练模型,使用SuperPoint与SuperGlue实现图像配准,可以参考https://blog.csdn.net/a486259/article/details/129093084

基于官方团队发布的代码训练自己的模型,可以参考https://blog.csdn.net/a486259/article/details/135425673进行实现,训练出的模型不能直接参考上述博客进行部署,为此发布使用代码。

本博文实现基于https://github.com/magicleap/SuperGluePretrainedNetwork进行改进。

1、已训练模型提取

1.1 superpoint模型

参考https://blog.csdn.net/a486259/article/details/135425673训练出的superpoint模型可以在logs目录中找到,具体如下所示。
在这里插入图片描述
使用以下代码,可以将训练出的superpoint模型参数提取出,保存为SuperGluePretrainedNetwork所需的格式,模型文件名为superpoint_v1.pth

>>> import torch
>>> m=torch.load("F:\OPEN_PROJECT\pytorch-superpoint-master\logs\superpoint_my_data\checkpoints\superPointNet_1611_checkpoint.pth.tar")    
>>> m_dict=m["model_state_dict"]
>>> torch.save(m_dict,"superpoint_v1.pth")

代码执行效果如下所示
在这里插入图片描述

1.2 superglue模型

参考https://blog.csdn.net/a486259/article/details/135425673训练出的SuperGlue模型存储路径如下所示,将目标模型复制一份,重命名为superglue_outdoor.pth
在这里插入图片描述

2、SuperGluePretrainedNetwork修改

2.1 代码修改

SuperGluePretrainedNetwork代码修改完全参考https://blog.csdn.net/a486259/article/details/129093084?中章节1、前置操作进行修改

2.2 创建SPSG

这个与2.1章节中链接的博客操作是一模一样的。

import torch
from superglue import SuperGlue
from superpoint import SuperPoint
import torch
import torch.nn as nn
import torch.nn.functional as F
class SPSG(nn.Module):#def __init__(self):super(SPSG, self).__init__()self.sp_model = SuperPoint({'max_keypoints':700})self.sg_model = SuperGlue({'weights': 'outdoor'})def forward(self,x1,x2):keypoints1,scores1,descriptors1=self.sp_model(x1)keypoints2,scores2,descriptors2=self.sp_model(x2)#print(scores1.shape,keypoints1.shape,descriptors1.shape)#example=(descriptors1.unsqueeze(0),descriptors2.unsqueeze(0),keypoints1.unsqueeze(0),keypoints2.unsqueeze(0),scores1.unsqueeze(0),scores2.unsqueeze(0))example=(descriptors1,descriptors2,keypoints1,keypoints2,scores1,scores2)indices0,  indices1,  mscores0,  mscores1=self.sg_model(*example)#return indices0,  indices1,  mscores0,  mscores1matches = indices0[0]valid = torch.nonzero(matches > -1).squeeze().detach()mkpts0 = keypoints1[0].index_select(0, valid);mkpts1 = keypoints2[0].index_select(0, matches.index_select(0, valid));confidence = mscores0[0].index_select(0, valid);return mkpts0, mkpts1, confidence

2.3 替换预训练模型

使用章节一种生成的superglue_outdoor.pth与superpoint_v1.pth替换掉原有的模型,具体如下所示
在这里插入图片描述

3、对自己的数据进行配准

使用以下代码,可以基于自行训练的模型对自己的数据进行配准。

进行图像读取、图像显示操作的代码被封装为imgutils库,具体可以查阅https://hpg123.blog.csdn.net/article/details/124824892

from imgutils import *
import torch
from SPSG import SPSG
model=SPSG().to('cuda')
tensor2a,img2a=read_img_as_tensor(r"potato\a (1).jpg",(320,320),device='cuda')
tensor2b,img2b=read_img_as_tensor(r"potato\a (2).jpg",(320,320),device='cuda')
print(tensor2a.shape)
mkpts0, mkpts1, confidence=model(tensor2a,tensor2b)
#myimshows( [img2a,img2b],size=12)import cv2 as cv
pt_num = mkpts0.shape[0]
im_dst,im_res=img2a,img2b
img = np.zeros((max(im_dst.shape[0], im_res.shape[0]), im_dst.shape[1]+im_res.shape[1]+10,3))
img[:,:im_res.shape[0],]=im_dst
img[:,-im_res.shape[0]:]=im_res
img=img.astype(np.uint8)
match_threshold=0.6
for i in range(0, pt_num):if (confidence[i] > match_threshold):pt0 = mkpts0[i].to('cpu').numpy().astype(np.int32)pt1 = mkpts1[i].to('cpu').numpy().astype(np.int32)#cv.circle(img, (pt0[0], pt0[1]), 1, (0, 0, 255), 2)#cv.circle(img, (pt1[0], pt1[1]+650), (0, 0, 255), 2)cv.line(img, pt0, (pt1[0]+im_res.shape[0], pt1[1]), (0, 255, 0), 1)
myimshow( img,size=12)import cv2
def getGoodMatchPoint(mkpts0, mkpts1, confidence,  match_threshold:float=0.5):n = min(mkpts0.size(0), mkpts1.size(0))srcImage1_matchedKPs, srcImage2_matchedKPs=[],[]if (match_threshold > 1 or match_threshold < 0):print("match_threshold error!")for i in range(n):kp0 = mkpts0[i]kp1 = mkpts1[i]pt0=(kp0[0].item(),kp0[1].item());pt1=(kp1[0].item(),kp1[1].item());c = confidence[i].item();if (c > match_threshold):srcImage1_matchedKPs.append(pt0);srcImage2_matchedKPs.append(pt1);return np.array(srcImage1_matchedKPs),np.array(srcImage2_matchedKPs)
pts_src, pts_dst=getGoodMatchPoint(mkpts0, mkpts1, confidence)h1, status = cv2.findHomography(pts_src, pts_dst, cv.RANSAC, 8)
im_out1 = cv2.warpPerspective(im_dst, h1, (im_dst.shape[1],im_dst.shape[0]))
im_out2 = cv2.warpPerspective(im_res, h1, (im_dst.shape[1],im_dst.shape[0]),16)
#这里 im_res和im_out1是严格配准的状态
myimshowsCL([im_dst,im_out1,im_res,im_out2],rows=2,cols=2, size=6)

代码、数据、模型的关系如下所示
在这里插入图片描述
代码运行效果如下所示
在这里插入图片描述
在这里插入图片描述

这篇关于使用自己训练的superpoint与superglue模型进行图像配准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876871

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删