算法沉淀——动态规划篇(子数组系列问题(下))

2024-04-04 21:20

本文主要是介绍算法沉淀——动态规划篇(子数组系列问题(下)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀——动态规划篇(子数组系列问题(下))

  • 前言
  • 一、等差数列划分
  • 二、最长湍流子数组
  • 三、单词拆分
  • 四、环绕字符串中唯一的子字符串

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程

    • 以上述的dp[i]意义为根据, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。
  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、等差数列划分

【题目】:413. 等差数列划分
【题目】:

 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
 给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。(子数组 是数组中的一个连续序列)

【示例】:

输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。

【分析】:
 我们可以定义dp[i]表示以i为结尾,等差数组的子数组个数。之后我们可以通过判断(nums[i]、nums[i-1]、nums[i-2])是否构成等差数列,来进一步分析

状态转移方程推导:

  1. 如果nums[i]、nums[i-1]、nums[i-2]不构成等差数列,显然此时以i为结尾的等差数组的子数组个数为0。即dp[i] = 0;
  2. 如果构成等差数列,此时dp[i]的值至少为1。此时我们还需加上dp[i-1]的值。原因在于如果以i-1为结尾的等差数列存在,此时该等差数列公差为dp[i-1] -dp[i-2]。同时nums[i]、nums[i-1]、nums[i-2]构成等差数列,公差也为dp[i-1] -dp[i-2]。这也意味着,以i-1为结尾的所有等差数列,在添加新增nums[i]元素后,依然是等差数列。所以状态转移方程为dp[i] = dp[i - 1] + 1;

细节处理:
 显然当i为1、2时,状态转移方程不适用。我们由于dp[0]、dp[1]一定构不成等差数列,所以我们可以先将dp[0]、dp[1]先初始化为0,在从下标2开始,从左往右填表。

【代码编写】:

class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n = nums.size();vector<int> dp(n);int ret = 0;for(int i = 2; i < n; i++){if(nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])dp[i] = dp[i - 1] + 1;ret += dp[i];//累加所有结果}return ret;}
};

二、最长湍流子数组

【题目链接】:978. 最长湍流子数组
【题目】:

 给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 。如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。
 更正式地来说,当 arr 的子数组 A[i], A[i+1], …, A[j] 满足仅满足下列条件时,我们称其为湍流子数组:
若 i <= k < j :当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j :当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。

【示例】:

输入:arr = [9,4,2,10,7,8,8,1,9]
输出:5
解释:arr[1] > arr[2] < arr[3] > arr[4] < arr[5]

【分析】:
 我们定义f[i]表示以i位置为结尾,并且最后是“上升”趋势的最长湍流子数组大小;g[i]表示以i位置为结尾,并且最后是“下降”趋势的最长湍流子数组大小。

状态转移方程推导:
 此时以i为结尾的湍流子数组长度可能为1,或大于1。具体如下:

在这里插入图片描述

在这里插入图片描述
特殊处理:
 以i为结尾的湍流子数组中,不管最后一步是呈上升趋势还是下降趋势,最小长度一定为1,即nums[i]本身。所以我们在创建f和g表时,可以将初始值设为1。后续填表过程中,仅需考虑子数组长度大于1的情况即可!!

【代码编写】:

class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {int n = arr.size();vector<int> f(n, 1), g(n, 1);int ret = 1;for(int i = 1; i < n; i++){if(arr[i] > arr[i - 1])f[i] = g[i - 1] + 1;else if(arr[i] < arr[i - 1])g[i] = f[i - 1] + 1;ret = max(ret, max(f[i], g[i]));}return ret;}
};

三、单词拆分

【题目链接】:139. 单词拆分
【题目】:

 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

【示例】:

输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的子字符串是否能单词拆分。

状态转移方程推导:

 要判断从下标从0到i的子串是否能单词拆分。我们可以将0到i的字串分为两部分:0到j-1,j到i(0 <= j <= i)。而dp[j-1]表示以j-1位置为结尾的字串能否单词拆分的结果。此时我们还需判断下标从j到i的字串是否能单词拆分。此时即可判断此种分发是否能实现单词拆分!!
 但由于j的位置不确定。所以我们可以一次将j从开始,逐渐减小到起始下标0。在每次递减过程中,只有存在一种拆分发将拆分出的两个字串都能实现拆分单词,此时dp[i]=true,同时可停止遍历。否则为false;

在这里插入图片描述
细节处理:
 在填dp表过程中,dp[i]的值会用到dp[j-1](0<=j<=i),可能会发生越界访问。所以我们为dp表额外增加一个空间,同时为了保证后续填表的正确性,我们需要将dp[0]初始化为true。
 同时面对字符串问题时,通常需要存在子字符窜问题。此时,下标映射关系可能+1,可能减1。所以这里个原始字符串最开始任意增加一个字符(习惯上该字符为空字符),让原始字符串下标统一向后移动一位。
【代码编写】:

class Solution {
public:bool wordBreak(string s, vector<string>& wordDict) {unordered_map<string, int> hash;for(auto& str : wordDict)//后续快速查找是否存在某单词hash[str]++;int n = s.size();vector<bool> dp(n + 1);dp[0] = true;//初始化,保证后续填表正确s = ' ' + s;//让s下标集体向后移动一位for(int i = 1; i <= n; i++)for(int j = i; j >= 1; j--){if(dp[j - 1] && hash.count(s.substr(j, i - j + 1))){dp[i] = true;break;}}return dp[n];}
};

四、环绕字符串中唯一的子字符串

【题目链接】:467. 环绕字符串中唯一的子字符串
【题目】:

【代码编写】:

 定义字符串 base 为一个 “abcdefghijklmnopqrstuvwxyz” 无限环绕的字符串,所以 base 看起来是这样的:

  • “…zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd…”。
    给你一个字符串 s ,请你统计并返回 s 中有多少 不同非空子串 也在 base 中出现。

【示例】:

输入:s = “zab”
输出:6
解释:字符串 s 有六个子字符串 (“z”, “a”, “b”, “za”, “ab”, and “zab”) 在 base 中出现。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的字符串中非空字串在base中出现的个数。

状态转移方程推导:
 非空字串存在于base中有两种可能:

  1. 相邻字符是连续的,即s[i-1] + 1 == s[i]
  2. 相邻字符分别是26个小写字母的结束和开始,即是bashs[i-1] == 'z' && s[i] == 'a'
    所以状态转移方程为:
if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))dp[i] = dp[i - 1] + 1;

细节处理:
 由于当个字符一定存在于base中,所以dp[i]的值最小为1,所以我们可以将dp表中的初始值全部初始化为1。

 上述dp表中的结果存在重复值,不能直接累加。那如何去重?

  • 我们知道以某一个字符为结尾的子串中,长子串一定包含了短子串的所有结果。所以我们可以借助一个26空间大小的数组,将s分割出的字串中,以结尾字符为依据,将最长字串结果放入对应的数组空间中。从而实现去重效果。即:hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);
     既然以及去重了,最后只需将数组中的结果累加即可!!


【代码编写】:

class Solution {
public:int findSubstringInWraproundString(string s) {int n = s.size();vector<int> dp(n, 1);for(int i = 1; i < n; i++)if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))dp[i] = dp[i - 1] + 1;int hash[26] = {0};for(int i = 0; i < n; i++)//去重hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);int ret = 0;for(auto x : hash)ret += x;return ret;}
};

这篇关于算法沉淀——动态规划篇(子数组系列问题(下))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876853

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异