DSP48E1 (primitive)原语例化实例2

2024-04-04 18:18

本文主要是介绍DSP48E1 (primitive)原语例化实例2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DSP48E1 (primitive)原语例化实例2

再补充两个比较常用的用法。

1  o <= in1*in2-c

OPMODE=7'b0110101

ALUMODE=0001

CARRYIN=1

ALUMODE = 0001 可以实现- Z + (X + Y) - 1 = not (Z) + X + Y

OPMODE[6:4]=011, Z选择C

CARRYIN=1, 即实现-Z+(X+Y)-1+1=(X+Y)-Z, 把这个-1抵消了


`timescale 1ns / 10ps // timescale time_unit/time_presicionmodule test(input wire clk,input wire rst,input wire signed [24:0] in1,input wire signed [17:0] in2,input wire signed [47:0] c,output wire signed [47:0]  o,output wire signed [29:0] acout,output wire signed [17:0] bcout,output wire [3:0] carryout,output wire [3:0] carrycasout,output wire signed [47:0] pcout
);DSP48E1 #(
.A_INPUT("DIRECT"),
.B_INPUT("DIRECT"),
.USE_DPORT("FALSE"),
.USE_MULT("MULTIPLY"),       
.USE_SIMD("ONE48"),               .AUTORESET_PATDET("NO_RESET"),    // "NO_RESET", "RESET_MATCH", "RESET_NOT_MATCH"
.MASK(48'h3fffffffffff),          // 48-bit mask value for pattern detect (1=ignore)
.PATTERN(48'h000000000000),       // 48-bit pattern match for pattern detect
.SEL_MASK("MASK"),           // "C", "MASK", "ROUNDING_MODE1", "ROUNDING_MODE2"
.SEL_PATTERN("PATTERN"),          // Select pattern value ("PATTERN" or "C")
.USE_PATTERN_DETECT("NO_PATDET"),  // Enable pattern detect ("PATDET" or "NO_PATDET")// Register Control Attributes: Pipeline Register Configuration
.ACASCREG(0),            //
.ADREG(1),               // Number of pipeline stages for pre-adder (0 or 1).ALUMODEREG(0),          // Number of pipeline stages for ALUMODE (0 or 1).AREG(0),                 // Number of pipeline stages for A (0, 1 or 2)  .BCASCREG(0),            // Number of pipeline stages between B/BCIN and BCOUT (0, 1 or 2).BREG(0),                         // Number of pipeline stages for B (0, 1 or 2).CARRYINREG(0),                   // Number of pipeline stages for CARRYIN (0 or 1)
.CARRYINSELREG(0),                // Number of pipeline stages for CARRYINSEL (0 or 1)
.CREG(0),                         // Number of pipeline stages for C (0 or 1)
.DREG(0),                         // Number of pipeline stages for D (0 or 1)
.INMODEREG(1),                    // Number of pipeline stages for INMODE (0 or 1)
.MREG(0),                         // Number of multiplier pipeline stages (0 or 1)
.OPMODEREG(0),                    // Number of pipeline stages for OPMODE (0 or 1)
.PREG(1)                          // Number of pipeline stages for P (0 or 1))
DSP48E1_inst (
// Cascade: 30-bit (each) output: Cascade Ports
.ACOUT(acout),                   // 30-bit output: A port cascade output
.BCOUT(bcout),                   // 18-bit output: B port cascade output
.CARRYCASCOUT(carrycasout),     // 1-bit output: Cascade carry output
.MULTSIGNOUT(),       // 1-bit output: Multiplier sign cascade output
.PCOUT(pcout),                   // 48-bit output: Cascade output
//这些引脚空着就好// Control: 1-bit (each) output: Control Inputs/Status Bits
.OVERFLOW(),             // 1-bit output: Overflow in add/acc output
.PATTERNBDETECT(),        // 1-bit output: Pattern bar detect output
.PATTERNDETECT(),   // 1-bit output: Pattern detect output
.UNDERFLOW(),           // 1-bit output: Underflow in add/acc output
//这些引脚也空着,没用// Data: 4-bit (each) output: Data Ports
.CARRYOUT(carryout),                               // 4-bit output: Carry output
.P(o),                           // 48-bit output: Primary data output
//P输出48bit的// Cascade: 30-bit (each) input: Cascade Ports
.ACIN(30'b0),                     // 30-bit input: A cascade data input
.BCIN(18'b0),                     // 18-bit input: B cascade input
.CARRYCASCIN(1'b0),              // 1-bit input: Cascade carry input
.MULTSIGNIN(1'b0),         // 1-bit input: Multiplier sign input
.PCIN(48'b0),                     // 48-bit input: P cascade input
//这些引脚很重要,做流水线时,数据又这几个引脚输入。// Control: 4-bit (each) input: Control Inputs/Status Bits
.ALUMODE(4'b0001),               // 4-bit input: ALU control input
.CARRYINSEL(3'b0),         // 3-bit input: Carry select input
.CLK(clk),                       // 1-bit input: Clock input
.INMODE(5'b0),                 // 5-bit input: INMODE control input
.OPMODE(7'b0110101),                 // 7-bit input: Operation mode input// Data: 30-bit (each) input: Data Ports
.A(in1),                           // 30-bit input: A data input
.B(in2),                           // 18-bit input: B data input
//.C(48'hffffffffffff),              // 48-bit input: C data input
.C(c),              // 48-bit input: C data input.CARRYIN(1'b1),                      // 1-bit input: Carry input signal
.D(25'b0),                           // 25-bit input: D data input// Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs
.CEA1(1'b0),                      // 1-bit input: Clock enable input for 1st stage AREG
.CEA2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage AREG
.CEAD(1'b0),                      // 1-bit input: Clock enable input for ADREG
.CEALUMODE(1'b0),                 // 1-bit input: Clock enable input for ALUMODE
.CEB1(1'b0),                      // 1-bit input: Clock enable input for 1st stage BREG
.CEB2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage BREG
.CEC(1'b0),                       // 1-bit input: Clock enable input for CREG
.CECARRYIN(1'b0),                 // 1-bit input: Clock enable input for CARRYINREG
.CECTRL(1'b0),                    // 1-bit input: Clock enable input for OPMODEREG and CARRYINSELREG
.CED(1'b0),                       // 1-bit input: Clock enable input for DREG
.CEINMODE(1'b0),                  // 1-bit input: Clock enable input for INMODEREG
.CEM(1'b0),                       // 1-bit input: Clock enable input for MREG
.CEP(1'b1),                       // 1-bit input: Clock enable input for PREG.RSTA(rst),
.RSTALLCARRYIN(rst),
.RSTALUMODE(rst),
.RSTB(rst),
.RSTC(rst),
.RSTCTRL(rst),
.RSTD(rst),
.RSTINMODE(rst),
.RSTM(rst),
.RSTP(rst)
);endmodulemodule bitstream_tb;
reg rst;
reg dec_clk;reg signed [24:0] a;
reg signed [17:0] b;
reg signed [47:0] d;
reg signed [47:0] c;wire signed [47:0] p;wire signed [29:0] ac;
wire signed [17:0] bc;
wire [3:0] co;
wire [3:0] ccas;
wire signed [47:0] pc;initial beginrst = 0;#200 a = 100;#0 b = 200;#0 d = 45;#0 c = 400;#50 rst = 1;#1 rst = 0;#100 $display("p %d",p);
endalways
begin#1 dec_clk = 0;#1 dec_clk = 1;
endtest test_inst(
.clk(dec_clk),
.rst(rst),
.in1(a),
.in2(b),
.c(c),.o(p),
.acout(ac),
.bcout(bc),
.carryout(co),
.carrycasout(ccas),
.pcout(pc)
);

2  o <= c±in1*in2

即o <= sub?c-in1*in2 : c+in1*in2

ALUMOD=sub?4'b0011:4’b0000

    

`timescale 1ns / 10ps // timescale time_unit/time_presicion
module test(input wire clk,input wire rst,input wire sub,             //0=add,1=subinput wire signed [24:0] in1,input wire signed [17:0] in2,input wire signed [47:0] c,output wire signed [47:0]  o,output wire signed [29:0] acout,output wire signed [17:0] bcout,output wire [3:0] carryout,output wire [3:0] carrycasout,output wire signed [47:0] pcout);DSP48E1 #(.A_INPUT("DIRECT"),.B_INPUT("DIRECT"),.USE_DPORT("FALSE"),.USE_MULT("MULTIPLY"),       .USE_SIMD("ONE48"),               .AUTORESET_PATDET("NO_RESET"),    // "NO_RESET", "RESET_MATCH", "RESET_NOT_MATCH".MASK(48'h3fffffffffff),          // 48-bit mask value for pattern detect (1=ignore).PATTERN(48'h000000000000),       // 48-bit pattern match for pattern detect.SEL_MASK("MASK"),           // "C", "MASK", "ROUNDING_MODE1", "ROUNDING_MODE2".SEL_PATTERN("PATTERN"),          // Select pattern value ("PATTERN" or "C").USE_PATTERN_DETECT("NO_PATDET"),  // Enable pattern detect ("PATDET" or "NO_PATDET")// Register Control Attributes: Pipeline Register Configuration.ACASCREG(0),            //.ADREG(1),               // Number of pipeline stages for pre-adder (0 or 1).ALUMODEREG(0),          // Number of pipeline stages for ALUMODE (0 or 1).AREG(0),                 // Number of pipeline stages for A (0, 1 or 2)  .BCASCREG(0),            // Number of pipeline stages between B/BCIN and BCOUT (0, 1 or 2).BREG(0),                         // Number of pipeline stages for B (0, 1 or 2).CARRYINREG(0),                   // Number of pipeline stages for CARRYIN (0 or 1).CARRYINSELREG(0),                // Number of pipeline stages for CARRYINSEL (0 or 1).CREG(0),                         // Number of pipeline stages for C (0 or 1).DREG(0),                         // Number of pipeline stages for D (0 or 1).INMODEREG(1),                    // Number of pipeline stages for INMODE (0 or 1).MREG(0),                         // Number of multiplier pipeline stages (0 or 1).OPMODEREG(0),                    // Number of pipeline stages for OPMODE (0 or 1).PREG(1)                          // Number of pipeline stages for P (0 or 1))DSP48E1_inst (// Cascade: 30-bit (each) output: Cascade Ports.ACOUT(acout),                   // 30-bit output: A port cascade output.BCOUT(bcout),                   // 18-bit output: B port cascade output.CARRYCASCOUT(carrycasout),     // 1-bit output: Cascade carry output.MULTSIGNOUT(),       // 1-bit output: Multiplier sign cascade output.PCOUT(pcout),                   // 48-bit output: Cascade output//这些引脚空着就好// Control: 1-bit (each) output: Control Inputs/Status Bits.OVERFLOW(),             // 1-bit output: Overflow in add/acc output.PATTERNBDETECT(),        // 1-bit output: Pattern bar detect output.PATTERNDETECT(),   // 1-bit output: Pattern detect output.UNDERFLOW(),           // 1-bit output: Underflow in add/acc output//这些引脚也空着,没用// Data: 4-bit (each) output: Data Ports.CARRYOUT(carryout),                               // 4-bit output: Carry output.P(o),                           // 48-bit output: Primary data output//P输出48bit的// Cascade: 30-bit (each) input: Cascade Ports.ACIN(30'b0),                     // 30-bit input: A cascade data input.BCIN(18'b0),                     // 18-bit input: B cascade input.CARRYCASCIN(1'b0),              // 1-bit input: Cascade carry input.MULTSIGNIN(1'b0),         // 1-bit input: Multiplier sign input.PCIN(48'b0),                     // 48-bit input: P cascade input//这些引脚很重要,做流水线时,数据又这几个引脚输入。// Control: 4-bit (each) input: Control Inputs/Status Bits.ALUMODE(sub?4'b0011:4’b0000),  // 4-bit input: ALU control input.CARRYINSEL(3'b0),         // 3-bit input: Carry select input.CLK(clk),                       // 1-bit input: Clock input.INMODE(5'b0),                 // 5-bit input: INMODE control input.OPMODE(7'b0110101),                 // 7-bit input: Operation mode input// Data: 30-bit (each) input: Data Ports.A(in1),                           // 30-bit input: A data input.B(in2),                           // 18-bit input: B data input//.C(48'hffffffffffff),              // 48-bit input: C data input.C(c),              // 48-bit input: C data input.CARRYIN(1'b0),                      // 1-bit input: Carry input signal.D(25'b0),                           // 25-bit input: D data input// Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs.CEA1(1'b0),                      // 1-bit input: Clock enable input for 1st stage AREG.CEA2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage AREG.CEAD(1'b0),                      // 1-bit input: Clock enable input for ADREG.CEALUMODE(1'b0),                 // 1-bit input: Clock enable input for ALUMODE.CEB1(1'b0),                      // 1-bit input: Clock enable input for 1st stage BREG.CEB2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage BREG.CEC(1'b0),                       // 1-bit input: Clock enable input for CREG.CECARRYIN(1'b0),                 // 1-bit input: Clock enable input for CARRYINREG.CECTRL(1'b0),                    // 1-bit input: Clock enable input for OPMODEREG and CARRYINSELREG.CED(1'b0),                       // 1-bit input: Clock enable input for DREG.CEINMODE(1'b0),                  // 1-bit input: Clock enable input for INMODEREG.CEM(1'b0),                       // 1-bit input: Clock enable input for MREG.CEP(1'b1),                       // 1-bit input: Clock enable input for PREG.RSTA(rst),.RSTALLCARRYIN(rst),.RSTALUMODE(rst),.RSTB(rst),.RSTC(rst),.RSTCTRL(rst),.RSTD(rst),.RSTINMODE(rst),.RSTM(rst),.RSTP(rst));endmodulemodule bitstream_tb;reg rst;reg dec_clk;reg           subadd;reg signed [24:0] a;reg signed [17:0] b;reg signed [47:0] d;reg signed [47:0] c;wire signed [47:0] p;wire signed [29:0] ac;wire signed [17:0] bc;wire [3:0] co;wire [3:0] ccas;wire signed [47:0] pc;initial beginrst = 0;#200 a = 10;#0 b = 20;#0 d = 45;#0 c = 400;#0 subadd = 0;#2 subadd = 1;#50 rst = 1;#1 rst = 0;#100 $display("p %d",p);endalwaysbegin#1 dec_clk = 0;#1 dec_clk = 1;endtest test_inst(.clk(dec_clk),.rst(rst),.sub(subadd),.in1(a),.in2(b),.c(c),.o(p),.acout(ac),.bcout(bc),.carryout(co),.carrycasout(ccas),.pcout(pc));endmodule

这篇关于DSP48E1 (primitive)原语例化实例2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876505

相关文章

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

Java实例化对象的​7种方式详解

《Java实例化对象的​7种方式详解》在Java中,实例化对象的方式有多种,具体取决于场景需求和设计模式,本文整理了7种常用的方法,文中的示例代码讲解详细,有需要的可以了解下... 目录1. ​new 关键字(直接构造)​2. ​反射(Reflection)​​3. ​克隆(Clone)​​4. ​反序列化

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3