算法打卡day34|动态规划篇02| Leetcode 62.不同路径、63. 不同路径 II

2024-04-04 17:12

本文主要是介绍算法打卡day34|动态规划篇02| Leetcode 62.不同路径、63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法题

Leetcode 62.不同路径

题目链接:62.不同路径

 大佬视频讲解:不同路径视频讲解

 个人思路

这道题非常经典,课后题也有,思路就是先初始化第一行和第一列的值,然后利用动规把到每一步计算出来,这样到终点就知道其左和上的值,相加即得。

解法
动态规划

动规五部曲:

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2.确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

那么dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3.dp数组的初始化

首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

4.确定遍历顺序

递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历。这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

5.举例推导dp数组

如图所示

   public static int uniquePaths(int m, int n) {int[][] dp = new int[m][n];for (int i = 0; i < m; i++) {//初始化第一行dp[i][0] = 1;}for (int i = 0; i < n; i++) {//初始化第一列dp[0][i] = 1;}for (int i = 1; i < m; i++) {//遍历for (int j = 1; j < n; j++) {dp[i][j] = dp[i-1][j]+dp[i][j-1];//递推公式}}return dp[m-1][n-1];}

时间复杂度:O(n*m);(遍历n*m个数)

空间复杂度:O( n*m);(存储一个n*m的dp二维数组)


 Leetcode  63. 不同路径 II

题目链接:63. 不同路径 II

大佬视频讲解:不同路径 II视频讲解

个人思路

上一题的plus版,多了个障碍物,递推公式还是和上题一样,只不过需要考虑遍历位置的左和上没有障碍物时才能计算值

解法
动态规划

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2.确定递推公式

递推公式上题一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这样有了障碍,那(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

3.dp数组如何初始化

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

如果(i, 0) 这条边有了障碍之后障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0

如图:

下标(0, j)的初始化情况同理。所以注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

4.确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。


 

5.举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m = obstacleGrid.length;int n = obstacleGrid[0].length;int[][] dp = new int[m][n];//如果在起点或终点出现了障碍,直接返回0if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {return 0;}for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {dp[i][0] = 1;}for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {dp[0][j] = 1;}for (int i = 1; i < m; i++) {//遍历for (int j = 1; j < n; j++) {//判断左方和上方没有障碍物时才能求和计算dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;}}return dp[m - 1][n - 1];//返回终点值}
}

时间复杂度:O(n*m);(遍历n*m个数)

空间复杂度:O( n*m);(存储一个n*m的dp二维数组)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

这篇关于算法打卡day34|动态规划篇02| Leetcode 62.不同路径、63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876370

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.