LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】

2024-04-04 07:28

本文主要是介绍LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】

  • 题目描述:
  • 解题思路一:双向链表,函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。一张图:
    • 知识点__slots__
  • 解题思路二:0
  • 解题思路三:0

题目描述:

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
    函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:

1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

解题思路一:双向链表,函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。一张图:

在这里插入图片描述

class Node:__slots__ = 'prev', 'next', 'key', 'value' # 提高访问属性的速度,并节省内存def __init__(self, key = 0, value = 0):self.key = keyself.value = valueclass LRUCache:def __init__(self, capacity: int):self.capacity = capacityself.dummy = Node() # 哨兵节点self.dummy.prev = self.dummyself.dummy.next = self.dummyself.key_to_node = dict()def get(self, key: int) -> int:node = self.get_node(key)return node.value if node else -1def put(self, key: int, value: int) -> None:node = self.get_node(key)if node: # 有这本书node.value = value # 更新 valuereturn self.key_to_node[key] = node = Node(key, value) # 新书self.push_front(node) # 放在最上面if len(self.key_to_node) > self.capacity: # 书太多了back_node = self.dummy.prevdel self.key_to_node[back_node.key] # 去掉最后一本书self.remove(back_node) # 去掉最后一本书def get_node(self, key: int) -> Optional[Node]:if key not in self.key_to_node: # 没有这本书return Nonenode = self.key_to_node[key] # 有这本书self.remove(node) # 把这本书抽出来self.push_front(node) # 放在最上面return nodedef remove(self, x: Node) -> None: # 删除一个节点(抽出一本书)x.prev.next = x.nextx.next.prev = x.prevdef push_front(self, x: Node) -> None: # 在链表头添加一个节点(把一本书放在最上面)x.prev = self.dummyx.next = self.dummy.nextx.prev.next = xx.next.prev = x# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

时间复杂度:O(1)
空间复杂度:O(min(p,capacity)),其中 p 为 put 的调用次数。

知识点__slots__

slots 是 Python 中用于优化类的属性访问和节省内存的特殊属性。当你定义一个类时,通常每个实例对象都会有一个字典来存储其属性和方法,这种灵活性使得可以在运行时动态地添加、修改和删除属性。然而,对于某些需要高性能和节省内存的场景,这种灵活性可能会显得过于浪费资源。

slots 的作用就是告诉解释器:这个类的实例只能拥有 slots 中指定的属性,而不再使用字典来存储属性。这样做的好处有两个:

  1. 提高访问速度: 由于属性被限定在预定义的集合中,访问这些属性时不再需要通过字典查找,而是可以直接定位到它们,因此访问速度会更快。

  2. 节省内存: 没有了动态属性字典,实例对象所需的内存空间会更小。这在需要大量创建实例对象的场景中尤为有用,可以有效地节省内存资源。

使用 slots 时,你需要在类中定义一个 slots 属性,这个属性是一个字符串组成的元组,用于指定类的实例可以拥有的属性名称。例如:

class MyClass:__slots__ = ('attr1', 'attr2')def __init__(self, a, b):self.attr1 = aself.attr2 = b

在这个例子中,MyClass 的实例只能拥有 attr1 和 attr2 这两个属性,而不能拥有其他动态添加的属性。这样就提高了访问速度和节省了内存。

需要注意的是,使用 slots 也有一些限制:

  • 不能动态添加新的属性,因为 slots 指定了固定的属性集合。
  • 每个实例只能拥有 slots 中指定的属性,而不能拥有其他属性。
  • 继承时如果子类定义了 slots,则父类的 slots 不会被继承。

因此,在需要优化属性访问速度和节省内存的情况下,可以考虑使用 slots

解题思路二:0


时间复杂度:O(n)
空间复杂度:O(n)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

这篇关于LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875156

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

React 记忆缓存的三种方法实现

《React记忆缓存的三种方法实现》本文主要介绍了React记忆缓存的三种方法实现,包含React.memo、useMemo、useCallback,用于避免不必要的组件重渲染和计算,感兴趣的可以... 目录1. React.memo2. useMemo3. useCallback使用场景与注意事项在 Re

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长