excel统计分析——协方差分析的作用

2024-04-04 06:44

本文主要是介绍excel统计分析——协方差分析的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:生物统计学

1、协变量与试验因素的区别

        如果把协方差分析资料中的协变量看作多因素方差分析资料中的一个因素,则两类资料有相似之处,但两类资料有本质的不同。在方差分析中,各因素的水平时人为控制的,即使是随机因素也是认为选定的;而在协方差分析中,协变量不能人为控制。

        例如,当考虑动物窝别对增重的影响时,一般可以把窝别当作随机因素,将不同窝看作不同水平,进行随机区组设计,同一窝的几只动物分别接受另一因素不同水平的处理,数据做方差分析。

        又如,如果考虑试验开始前动物初始体重的影响,以初始体重为一个因素,不同初始体重作为不同水平,进行随机区组设计,初始体重相同的动物为一组,分别接受另一因素不同水平的处理,数据方差分析也无问题。

        但是如果客供试验的动物很少,初始体重又有明显差异,无法选到足够相同或近似体重的动物,就只好对不同初始体重的动物进行不同饲料配方的处理,此时应当认为初始体重x与增重y有回归关系,采用协方差分析的方法排除初始体重的影响,然后再来比较其他因素对增重的影响。

        消除初始体重影响的另一种方法是对最终体重与初始体重的差值即y-x进行统计分析,但这种方法与协方差分析的生物学意义是不同的。对差值进行分析时假设初始体重对以后的体重增量没有任何影响,而协方差分析则是假设最终体重中包含初始体重的影响,这种影响的大小与初始体重成正比,即协方差分析是假设初始体重在以后的生长过程中也发挥作用,而对差值进行方差分析时假设初始体重以后不再发挥作用。

        协方差分析过程包含对协变量影响是否存在及其大小等一系列统计检验和估计,它显然比对差值进行分析等方法有更广泛的适用范围,因此除非有明显证据说明对差值进行分析的生物学假设是正确的,一般情况下应采用协方差分析的方法

        两种生物学假设显然不同,对于一种统计方法,不仅要注意它与其他方法在算法上的不同,更要注意算法背后的生物学假设有什么不同,这种深层次的理解有助于工作中选取正确的统计方法。

2、协方差分析的作用

        协方差分析有3个方面的作用:一是对试验进行统计控制;二是对协方差组分进行估计(分析不同变异源的相关关系);三是对缺失数据进行估计。

(1)对试验进行统计控制

        为了提高试验的精确性和准确性,对处理以外的一切条件都需要采取有效措施严加控制,使它们在各处理间尽量一致,这称为试验控制(experimental control)。但在有些情况下,难以实现实验控制,需要辅助统计控制,经过统计学上的矫正,使试验误差减小,对试验处理效应的估计更为准确。

        如果y的变异主要由x的不同造成(处理没有显著效应),则矫正后的y'间将没有显著差异(但原y间的差异可能是显著的)。如果y的变异除去x不同的影响外,上存在不同处理的显著效应,则可期望各y'间将有显著差异(但原y间差异可能不显著)。此外,校正后的y'和原y的大小次序也常不一致。因此,处理平均数的回归矫正和矫正平均数的显著性检验,能够提高试验的准确性和精确性,从而更真实地反映试验处理的效应。

(2)估计协方差组分

        将相关系数公式r=\frac{\sum (x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^2\sum(y-\bar{y})^2}}右边的分子、分母同除以自由度(n-1),得到

r=\frac{\frac{\sum (x-\bar{x})(y-\bar{y})}{n-1}}{\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}\frac{\sum(y-\bar{y})^2}{n-1}}}

其中,\frac{\sum(x-\bar{x})^2}{n-1}\frac{\sum(y-\bar{y})^2}{n-1}分别为x、y的均方MSx、MSy。类似地,将\frac{\sum(x-\bar{x})(y-\bar{y})}{n-1}称为均积,记为MPxy,即

MP_{xy}=\frac{\sum(x-\bar{x})(y-\bar{y})}{n-1}=\frac{\sum xy-\frac{(\sum x)(\sum y)}{n}}{n-1}

于是,相关系数r可表示为:

r=\frac{MP_{xy}}{\sqrt{MS_x\cdot MS_y}}

        均方MSx、MSy对应的参数为总体方差\sigma_x^2\sigma_y^2,均积MP_xy对应的参数称为总体协方差(covariance),记为COV_{xy}\sigma_{xy}。统计学上可证明,均积MP_xy是协方差COV_{xy}的无偏估计量。均积和均方具有相似的形式,也有相似的性质。

        在方差分析中,一个变量的总平方和与自由度可按变异源进行剖析,从而求得相应的均方。统计学已证明:两个变量的总体乘积和预自由度也可按变异源进行分解而获得相应的均积。这种把两个变量的总乘积和与自由度按变异源进行剖析并获得相应均积的方法也称为协方差分析。

        在随机模型的方差分析中,根据均方MS和期望均方的关系,可以得到不同变异源的方差组分的估计值。同样,在随机模型的协方差分析中,根据均积MP和期望均积的关系,可得到不同变异源的协方差组分的估计值。有了这些估计值,就可以进行相应的总体相关分析。

(3)对缺失数据进行估计

        利用方差分析对缺失数据进行估计,需以误差平方和最小为基础,会出现处理平方和向上偏倚的结果。如果利用协方差分析对缺失数据进行估计,既可保证误差平方和最小,又可避免处理平方和的偏倚。

这篇关于excel统计分析——协方差分析的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875075

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#利用Free Spire.XLS for .NET复制Excel工作表

《C#利用FreeSpire.XLSfor.NET复制Excel工作表》在日常的.NET开发中,我们经常需要操作Excel文件,本文将详细介绍C#如何使用FreeSpire.XLSfor.NET... 目录1. 环境准备2. 核心功能3. android示例代码3.1 在同一工作簿内复制工作表3.2 在不同

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

java读取excel文件为base64实现方式

《java读取excel文件为base64实现方式》文章介绍使用ApachePOI和EasyExcel处理Excel文件并转换为Base64的方法,强调EasyExcel适合大文件且内存占用低,需注意... 目录使用 Apache POI 读取 Excel 并转换为 Base64使用 EasyExcel 处