贵州省NPP净初级生产力数据/NDVI数据

2024-04-04 00:36

本文主要是介绍贵州省NPP净初级生产力数据/NDVI数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     数据福利是专门为关注小编博客及公众号的朋友定制的,未关注用户不享受免费共享服务,已经被列入黑名单的用户和单位不享受免费共享服务。参与本号发起的数据众筹,向本号捐赠过硬盘以及多次转发、评论的朋友优先享有免费共享服务。

净初级生产力NPP数据


引言

        第一性生产力是绿色植物呼吸后所剩下的单位面积单位时间内所固定的能量或所生产的有机物质,即是总第一性生产量减去植物呼吸作用所剩下的能量或有机物质。多种卫星遥感数据反演净初级生产力(NPP)产品是地理遥感生态网平台推出的生态环境类系列数据产品之一。

正文


数据简介

        植物通过光合作用将太阳能固定并转化为植物生物量。单位时间和单位面积上,绿色植物通过光合作用产生的全部有机物同化量,即光合总量,叫总初级生产力(Gross Primary Productivity,GPP);净初级生产力则是由光合作用所产生的有机质总量中扣除自养呼吸后的剩余部分。净初级生产力(net primary productivity,NPP)是生产者能用于生长、发育和繁殖的能量值,也是生态系统中其他生物成员生存和繁衍的物质基础。

        贵州,地处中国西南内陆地区腹地。境内地势西高东低,自中部向北、东、南三面倾斜,平均海拔在1100米左右。贵州的气候温暖湿润,属亚热带湿润季风气候。

        地理遥感生态网提供的NPP数据基于CASA模型估算,其计算植被NPP的基本思想是利用植被获取太阳辐射, 加上植被自身利用的情况, 从而估算出植被净生长状况。模型中所估算的NPP可以由植被吸收的光合有效辐射(APAR)和实际光能利用率(ε)两个因子来表示, 公式如下:

式中, x代表单个像元, t表示月份, APAR(xt)则表示像元xt月吸收的光合有效辐射(gC/m2), ε(xt)表示单个像元xt月的实际光能利用率(gC/MJ)。

数据名称

净初级生产力NPP数据

数据类型

栅格 

数据格式

GRID、TIFF

分辨率/比例尺

10m、30m、100m、250m、500m、1km等多种分辨率

覆盖范围

全境陆地国土

坐标系 

默认投影为Krasovsky_1940_Albers,其他坐标系可进行投影转换

时间序列

基本时间序列: 1980年-至今;时间尺度逐月逐年

《10米精度NPP净初级生产力数据集》共享方法如下:

(1)人员,限定为关注小编的用户。

(2)各类项目(包括各类科研项目)申请本数据扔享受免费政策,但需向本号捐赠一定数量的硬盘才能获取。

(3)捐赠硬盘可免留言获取数据。

        地理遥感生态网上分享了很多地理遥感领域的科学数据(土地利用数据、npp净初级生产力数据数据、NDVI数据、径流量数据、夜间灯光数据、统计年鉴、道路网、POI兴趣点数据、GDP分布、人口密度分布、三级流域矢量边界、地质灾害分布数据、土壤类型、土壤质地、土壤有机质、土壤PH值、土壤质地、土壤侵蚀、植被类型、自然保护区分布、建筑轮廓分布等等地理数据,以及关于gis、遥感从方面的操作教程)。

原文链接:https://bbs.csdn.net/forums/gisrs?spm=1001.2014.3001.6682

这篇关于贵州省NPP净初级生产力数据/NDVI数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874383

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本