路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)

本文主要是介绍路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

历经一个多星期时间,我们在路径规划——搜索算法部分讲解了7种常见的路径搜索算法,每一种算法的链接放在下面了,有需要的朋友点击跳转即可:

路径规划——搜索算法详解(一):Dijkstra算法详解与代码_dijkstrac代码实现-CSDN博客

路径规划——搜索算法详解(二):Floyd算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(三):RRT算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(四):A*算法详解与C++代码-CSDN博客

路径规划——搜索算法详解(五):Dynamic A Star(D*)算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(六):LPA*算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(七):D*lite算法详解与Matlab代码-CSDN博客

以上所有算法的仿真都在笔者github上了:GitHub - Adamaser/Path-Planning

路径规划问题可以粗糙地划分为两个步骤:路径搜索与轨迹优化, 路径搜索生成可行的折线路径,但是不符合无人机、无人车的动力学,不能够直接输出给无人机、无人车直接执行。所以此时就需要进行轨迹优化,结合机器人的运动学模型,采用合适的曲线进行轨迹优化,生成光滑可行且符合机器人运动学的路径,由于笔者是做无人机方向的,所以在曲线拟合这一章中将以生成符合无人机运动学的轨迹为例讲解轨迹优化的知识。

曲线拟合部分将介绍两种无人机中常用的曲线,即多项式拟合与B样条拟合,由于其极具工程意义,所以曲线篇将会提供C++代码并且在ROS环境下进行仿真,大家可以看作是minimum-snap算法的复现,希望对大家有所帮助!

一、多项式轨迹介绍:

1.无人机的微分平坦特性

无人机12个状态量,分别为x、y、z三个维度上的位置、速度、角度、角速度,其符号表示如下:

微分平坦特性指的是可以通过对输入的高阶导数进行显示表示,以简化轨迹设计与跟踪控制的表达,可以通过选择合理的控制量对系统的控制空间进行有效降维。

简言说之,就是原有的状态空间有12个量,他们并不是相互之间互不关联的,我们从里面得到几个状态量,通过这些状态量及其高阶导数可以直接求出其他状态量,经过证明,无人机具有微分平坦特性,其状态量可以简化为以下四个量表示:

具体的证明过程大家直接搜索就可以看到很多帖子,这里就不多介绍了,所以我们可以直接通过控制x、y、z、yaw角就可以控制无人机的姿态。

2.多项式轨迹表示与约束构建:

多项式轨迹是一种常见的曲线,根据多项式的最高次数可以分为一次、二次、...、N次多项式,我们需要怎么选择次数呢,我们以五次多项式为例:

如上所示,五次多项式一共拥有p0-p5六个求解的自由度,我们可以添加6个约束条件以求得p0-p5,如下所示,我们可以先通过路径搜索算法得到如下的折线(黑色)轨迹:

我们对每段轨迹进行多项式的拟合,然后连接每一段轨迹的头与尾就可以得到一条连续的多项式轨迹,对于每一条折线轨迹,假设曲线表示为x(t),可以根据需要对起点位置x(0)、终点位置x(T)、起点速度x‘(0)、终点速度x’(T)、起点加速度x‘’(0)、终点加速度x‘’(T)进行约束:

假设此时的约束条件如下:

我们将起点t=0、终点t=T带入以下多项式中:

此外x(t)求导一次后再将起点t=0、终点t=T带入可以得到该时刻的速度、再次求导带入可以得到起点t=0、终点t=T处的加速度,此时我们将其写成矩阵形式可以得到以下的矩阵方程:

求解后我们便可得到满足上述约束条件所对应的p0-p5,此时便可以准确地表达出t=0到t=T时刻的多项式曲线,该曲线满足起点与终点的位置、速度、加速度条件。

以上求解x维度上的多项式曲线,同理我们可以求出y、z维度上的曲线,它们轨迹在各个坐标轴上是独立的,因此我们可以对其分别进行轨迹拟合。也就是说我们可以分别对它们在x , y , z进行路径生成,然后直接将三个轴合成就可以得到一个完整的空间轨迹。

3.minimum-snap算法(PPT来自深蓝学院课程笔记):

基于此思想,我们分段表示每一段折线轨迹:

 采用分段的方式表示其轨迹:

f(t)为位置、f'(t)为速度、f''(t)加速度、f'''(t)为加加速度jerk、f''''(t)为加加加速度snap,jerk可以影响无人机在该维度上的角速度,而jerk可以影响该维度上的角加速度,如下图所示:

以minimum-snap为例,由于我们要对其求4次导数,需要保证jerk是连续的(所以我们要对轨每一段轨迹的起点与终点的位置、速度、加速度、加加速度jerk进行约束,后面会说约束要怎么加),对于每一段轨迹累加其snap的最小值:

如上所示,累加每段轨迹的snap可以化为一个二次优化问题QP,通过求解该优化问题得到每一段轨迹的系数矩阵P,但是在求解之间我们需要将每一段轨迹的起点与终点的位置、速度、加速度约束加入到该优化问题中,可以通过以下方式构建约束:

通过上述方式,我们将起点与终点的导数约束统一为AP=D这一约束条件,所以我们需要求解的优化问题如下所示:

通过调用OOQP、Mosek等QP问题求解器即可得到每一段轨迹的多项式系数,即得到了该维度上的光滑曲线。

具体的大家参考该论文:

Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 2520-2525.

二、多项式轨迹仿真:

demo大家可以参考下笔者的Github吧(笔者版本为ubuntu18.04),手搓的,代码注释很详细,包括QP矩阵构建与求解都有:

Path-Planning/Astar_/src at main · Adamaser/Path-Planning (github.com)

将src放到工作空间中,直接catkin build编译,编译后运行:

roslaunch grid_path_searcher my_demo.launch 

就可以直接看到效果(绿色折线为A*搜索结果)

这篇关于路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874365

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J