【智能算法】蜜獾算法(HBA)原理及实现

2024-04-03 23:28

本文主要是介绍【智能算法】蜜獾算法(HBA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2021年,FA Hashim等人受到自然界中蜜獾狩猎行为启发,提出了蜜獾算法((Honey Badger Algorithm,HBA)。

2.算法原理

2.1算法思想

蜜獾以其独特的狩猎方式而闻名,它利用嗅觉定位猎物,通过挖掘来捕获目标。虽然蜜獾喜欢蜂蜜,但并不擅长找到蜂巢。与此不同的是,蜂蜜向导鸟擅长定位蜂巢,却无法获得蜂蜜。因此,蜜獾会依靠蜂蜜向导鸟的帮助找到蜂巢,并与其共享收获。HBA主要分为挖掘阶段和采蜜阶段
在这里插入图片描述

2.2算法过程

定义强度

蜜獾的嗅觉强度不仅与猎物的集中强度有关,还与猎物和蜜獾之间的距离有关。Ii是猎物的气味强度,气味强度越高,蜜獾运动越快:
I i = r 2 × S 4 π d i 2 S = ( x i − x i + 1 ) 2 d i = x p rey − x i (1) \begin{aligned}I_i&=r_2\times\frac{S}{4\pi d_i^2}\\S&=(x_i-x_{i+1})^2\\d_i&=x_{p\text{rey}} - x_i\end{aligned}\tag{1} IiSdi=r2×4πdi2S=(xixi+1)2=xpreyxi(1)

更新密度因子:

密度因子w控制时变随机化,以确保勘探到开发的平稳过渡。当更新随着迭代次数减少时,密度因子w也会减少随机化:
w = C exp ⁡ ( − t t m a x ) (2) w=\text{C}\exp(\frac{-t}{t_{\mathrm{max}}})\tag{2} w=Cexp(tmaxt)(2)

挖掘阶段

在挖掘阶段,蜜獾运动范围类似于心形:
X n e n , = x p r e y + F × β × I × x p r e y + F × r 3 × w × d i × ∣ cos ⁡ ( 2 π r 4 ) × [ l − cos ⁡ ( 2 π r 5 ) ] ∣ (3) \begin{aligned} X_{nen}, =x_{prey}+F\times\beta\times I\times x_{prey}+F\times r_{3}\times w\times d_{i}\times |\cos(2\pi r_{4})\times[\text{l}-\cos(2\pi r_{5})]| \end{aligned}\tag{3} Xnen,=xprey+F×β×I×xprey+F×r3×w×di×cos(2πr4)×[lcos(2πr5)](3)
在这里插入图片描述
其中 x p r e y x_{prey} xprey是猎物的全局最优位置, β \beta β是蜜獾获取食物的能力。F是改变搜索方向参数:
F = { 1 i f − 1 e l s e , r 6 ≤ 0.5 (4) F=\begin{cases}1&if\\-1&else,\end{cases}r_6\leq0.5\tag{4} F={11ifelse,r60.5(4)

采蜜阶段

蜜獾跟随导蜜鸟找到蜂巢:
x n e w = x p v e y + F × r 7 × w × d i (5) x_{new}=x_{pvey}+F\times r_{7}\times w\times d_{i}\tag{5} xnew=xpvey+F×r7×w×di(5)

伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Hashim F A, Houssein E H, Hussain K, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2022, 192: 84-110.

这篇关于【智能算法】蜜獾算法(HBA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874258

相关文章

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

Go中select多路复用的实现示例

《Go中select多路复用的实现示例》Go的select用于多通道通信,实现多路复用,支持随机选择、超时控制及非阻塞操作,建议合理使用以避免协程泄漏和死循环,感兴趣的可以了解一下... 目录一、什么是select基本语法:二、select 使用示例示例1:监听多个通道输入三、select的特性四、使用se

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境