LeetCode 第四题:寻找两个正序数组的中位数 【4/1000 】【python + go】

2024-04-03 20:12

本文主要是介绍LeetCode 第四题:寻找两个正序数组的中位数 【4/1000 】【python + go】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

👤作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
作者专栏每日更新:
LeetCode解锁1000题:打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题库中的“寻找两个正序数组的中位数”问题是一个经典的算法挑战。这个问题不仅出现在在线编程平台上,也是许多技术面试中的常见题目,值得深入探讨一下

问题描述

给定两个大小分别为 m 和 n 的正序(非递减)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。示例:

输入:nums1 = [1,3], nums2 = [2]
输出:2.0
解释:合并数组 = [1,2,3],中位数 2

解题思路

理解这个问题的关键在于,两个数组是有序的,这为我们提供了很多可以利用的性质。一种直观的解法是将两个数组合并成一个大的有序数组,然后直接找到中位数。虽然这种方法很直接,但它的时间复杂度为 (O(m+n)),并不是最优解。

最优解法 —— 二分查找法

要提高效率,可以考虑二分查找法。核心思路是,中位数将一个集合分为两个长度相等的子集,一个子集中的所有元素都小于另一个子集中的元素。对于两个有序数组,我们可以利用二分查找在 (O(\log(m+n))) 的时间复杂度内找到中位数。

算法步骤

确定较短的数组:为了减少查找的范围,我们总是在两个数组中较短的那个进行二分查找。
二分查找:在较短数组中进行二分查找,确定一个切点,使得两个数组被分为左右两个部分,左边部分的元素总数等于右边部分(或者多一个,如果总元素数为奇数)。
调整切点:通过比较两个数组在切点附近的元素,调整切点的位置,直到满足中位数的性质:左边部分的最大元素小于或等于右边部分的最小元素。
计算中位数:根据切点确定的左右两部分,计算中位数。

python示例

def find_median_sorted_arrays(nums1: [int], nums2: [int]) -> float:# 确保 nums1 是两个中较短的数组if len(nums1) > len(nums2):nums1, nums2 = nums2, nums1m, n = len(nums1), len(nums2)# 初始化二分查找的边界left, right, half_len = 0, m, (m + n + 1) // 2while left <= right:# i 和 j 分别为两个数组的切分点i = (left + right) // 2j = half_len - i# 调整左边界if i < m and nums2[j-1] > nums1[i]:left = i + 1# 调整右边界elif i > 0 and nums1[i-1] > nums2[j]:right = i - 1else:# 找到合适的切分点,计算中位数if i == 0: max_of_left = nums2[j-1]elif j == 0: max_of_left = nums1[i-1]else: max_of_left = max(nums1[i-1], nums2[j-1])if (m + n) % 2 == 1:# 如果 m + n 是奇数,中位数是左半部的最大值return max_of_left# 如果 m + n 是偶数,中位数是左半部的最大值和右半部的最小值的平均值if i == m: min_of_right = nums2[j]elif j == n: min_of_right = nums1[i]else: min_of_right = min(nums1[i], nums2[j])return (max_of_left + min_of_right) / 2.0return 0# 示例测试
nums1 = [1, 3]
nums2 = [2]
print(f"中位数是:{find_median_sorted_arrays(nums1, nums2)}")

代码解读:

让我们一步一步分析上面的Python代码,以解释它是如何找到两个有序数组中位数的。

关键变量

  • nums1 和 nums2: 输入的两个有序数组。
  • m 和 n: 分别是 nums1 和 nums2 的长度。
  • left 和 right:用于在较短数组 nums1 上执行二分查找的指针。
  • half_len: 两个数组合并后左半部分的长度。

二分查找

二分查找的目的是在较短的数组 nums1 中找到一个位置 i,同时在 nums2 中找到位置 j,使得:

  • nums1[i-1] <= nums2[j] 且 nums2[j-1] <= nums1[I]

位置 i 和 j 的选取使得nums1和nums2被分割成两个部分,左半部分的所有元素都不大于右半部分的元素。

边界条件处理

循环中的条件判断用于处理边界条件,确保不会访问数组外的元素:

  • 如果 i 还可以增大,并且 nums2[j-1] > nums1[i],那么需要将 left 移动到 i + 1,这意味着 i 的位置太小,需要向右移动以增大 i。
  • 如果 i 还可以减小,并且 nums1[i-1] > nums2[j],那么需要将 right 移动到 i - 1,这意味着 i 的位置太大,需要向左移动以减小 i。

计算中位数

一旦找到了合适的 i 和 j,中位数可以通过下列方式计算:

  • 当 m + n 为奇数时,中位数是左半部分的最大值。
  • 当 m + n 为偶数时,中位数是左半部分的最大值和右半部分的最小值的平均值。
    代码中使用了几个条件判断来处理这个逻辑,确保即使在边界条件下(比如某一数组的所有元素都在另一数组的左边或右边时)也能正确计算中位数。

返回结果

最后,根据 m + n 的奇偶性,返回合适的中位数值。

这个算法精妙地利用了二分查找和有序数组的性质来高效地解决问题,避免了将两个数组合并后再查找中位数,从而达到了更优的时间复杂度 O(log(min(m,n)))。

goland示例

我们同样可以采用二分查找法。以下是 Go 语言版本的实现及其解读。

package mainimport ("fmt""math"
)func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {// 确保 nums1 是较短的数组if len(nums1) > len(nums2) {nums1, nums2 = nums2, nums1}m, n := len(nums1), len(nums2)left, right, halfLen := 0, m, (m+n+1)/2var maxOfLeft, minOfRight intfor left <= right {i := (left + right) / 2j := halfLen - iif i < m && nums2[j-1] > nums1[i] {left = i + 1} else if i > 0 && nums1[i-1] > nums2[j] {right = i - 1} else {if i == 0 {maxOfLeft = nums2[j-1]} else if j == 0 {maxOfLeft = nums1[i-1]} else {maxOfLeft = int(math.Max(float64(nums1[i-1]), float64(nums2[j-1])))}if (m+n)%2 == 1 {return float64(maxOfLeft)}if i == m {minOfRight = nums2[j]} else if j == n {minOfRight = nums1[i]} else {minOfRight = int(math.Min(float64(nums1[i]), float64(nums2[j])))}return float64(maxOfLeft+minOfRight) / 2.0}}return 0.0
}func main() {nums1 := []int{1, 3}nums2 := []int{2}fmt.Println("中位数是:", findMedianSortedArrays(nums1, nums2))
}

代码解读

  • 此解决方案首先检查 nums1 和 nums2 的长度,确保 nums1 是较短的数组,这样可以减少我们二分查找的范围。
  • left 和 right 变量定义了 nums1 上的查找范围,而 halfLen 变量则根据两数组的总长度计算中位数左侧的元素数量。
  • 在二分查找过程中,i 和 j 分别表示 nums1 和 nums2 中用于分割数组的索引。left 和 right 的调整基于 nums1[i] 和 nums2[j] 的比较,以确保左侧的最大值不大于右侧的最小值。
  • 当找到合适的分割线时,根据奇偶性计算中位数。如果总长度是奇数,则中位数是左侧的最大值;如果是偶数,则中位数是左侧最大值和右侧最小值的平均数。

总结

通过这种方法,我们能够在
O(log(min(m,n))) 时间复杂度内找到两个有序数组的中位数。Go 语言的实现利用了数学库中的 math.Max 和 math.Min 函数来简化代码,同时保持了算法的核心逻辑清晰明了。

这篇关于LeetCode 第四题:寻找两个正序数组的中位数 【4/1000 】【python + go】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873866

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.