Pandas处理缺省数据

2024-04-03 17:44
文章标签 数据 处理 pandas 缺省

本文主要是介绍Pandas处理缺省数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

SQL查询数据为空''或者null的字段,如果查询字段为''或者NULL需要设置为'NULL'

 

解决方案:

只处理指定字段

在 Pandas 中处理缺失数据(如 SQL 查询结果中的空字符串或 NULL 值)可以通过 `fillna()` 方法来实现。您可以将空字符串或 NULL 值替换为您想要的值,比如将其替换为字符串 `'NULL'`。

 

下面是一个示例,演示如何将 DataFrame 中的空字符串或 NULL 值替换为 `'NULL'`:

 

```python

import pandas as pd

 

# 假设 df 是您的 DataFrame,包含从 SQL 查询中获取的数据

# 假设字段 'column_name' 中包含空字符串或 NULL 值

 

# 将空字符串替换为 'NULL'

df['column_name'] = df['column_name'].replace('', 'NULL')

 

# 将 NULL 值替换为 'NULL'

df['column_name'].fillna('NULL', inplace=True)

 

# 打印处理后的 DataFrame

print(df)

```

 

在这个示例中,首先使用 `replace()` 方法将空字符串替换为 `'NULL'`,然后使用 `fillna()` 方法将 NULL 值替换为 `'NULL'`。通过这样处理,您可以将 DataFrame 中的空字符串和 NULL 值统一替换为 `'NULL'`。

 

处理所有字段

如果您不知道具体哪些列可能包含空字符串或 NULL 值,您可以使用循环遍历 DataFrame 的列,并对每一列进行处理。以下是一个示例代码,可以处理 DataFrame 中所有列的空字符串或 NULL 值:

 

```python

import pandas as pd

 

# 假设 df 是您的 DataFrame,包含从 SQL 查询中获取的数据

 

# 遍历 DataFrame 的每一列

for col in df.columns:

    # 将空字符串替换为 'NULL'

    df[col] = df[col].replace('', 'NULL')

   

    # 将 NULL 值替换为 'NULL'

    df[col].fillna('NULL', inplace=True)

 

# 打印处理后的 DataFrame

print(df)

```

 

这段代码会遍历 DataFrame 的每一列,将列中的空字符串替换为 `'NULL'`,并将 NULL 值替换为 `'NULL'`。这样可以确保处理了所有列中可能存在的空字符串或 NULL 值。

 

请注意,这种方法会将所有列中的空字符串或 NULL 值替换为 `'NULL'`,如果您希望只针对特定列进行处理,可以在循环中添加条件来判断是否处理该列。

 

这篇关于Pandas处理缺省数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873567

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二