CentOS7安装flink1.17完全分布式

2024-04-03 09:20

本文主要是介绍CentOS7安装flink1.17完全分布式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前提条件

准备三台CenOS7机器,主机名称,例如:node2,node3,node4

三台机器安装好jdk8,通常情况下,flink需要结合hadoop处理大数据问题,建议先安装hadoop,可参考 hadoop安装

Flink集群规划

node2node3node4

JobManager

TaskManager

TaskManagerTaskManager

下载安装包

在node2机器操作

[hadoop@node2 ~]$ cd installfile/
[hadoop@node2 installfile]$ wget https://archive.apache.org/dist/flink/flink-1.17.1/flink-1.17.1-bin-scala_2.12.tgz --no-check-certificate

解压安装包

[hadoop@node2 installfile]$ tar -zxvf flink-1.17.1-bin-scala_2.12.tgz -C ~/soft

进入到解压后的目录,查看解压后的文件

[hadoop@node2 installfile]$ cd ~/soft/
[hadoop@node2 soft]$ ls
​

配置环境变量

[hadoop@node2 soft]$ sudo nano /etc/profile.d/my_env.sh

添加如下内容

#FLINK_HOME
export FLINK_HOME=/home/hadoop/soft/flink-1.17.1
export PATH=$PATH:$FLINK_HOME/bin

让环境变量生效

[hadoop@node2 soft]$ source /etc/profile

验证版本号

[hadoop@node2 soft]$ flink -v
Version: 1.17.1, Commit ID: 2750d5c

看到如上Version: 1.17.1版本号字样,说明环境变量配置成功。

配置flink

进入flink配置目录,查看配置文件

[hadoop@node2 ~]$ cd $FLINK_HOME/conf
[hadoop@node2 conf]$ ls
flink-conf.yaml       log4j-console.properties  log4j-session.properties  logback-session.xml  masters  zoo.cfg
log4j-cli.properties  log4j.properties          logback-console.xml       logback.xml          workers
​

配置flink-conf.yaml

[hadoop@node2 conf]$ vim flink-conf.yaml

找到相关配置项并修改,如下

jobmanager.rpc.address: node2
jobmanager.bind-host: 0.0.0.0
taskmanager.bind-host: 0.0.0.0
taskmanager.host: node2
rest.address: node2
rest.bind-address: 0.0.0.0

配置workers

[hadoop@node2 conf]$ vim workers

把原有内容删除,添加内容如下:

node2
node3
node4

配置masters

[hadoop@node2 conf]$ vim masters 

修改后内容如下:

node2:8081

分发flink安装目录

确保node3、node4机器已开启的情况下,执行如下分发命令。

[hadoop@node2 conf]$ xsync ~/soft/flink-1.17.1

修改node3和node4的配置

node3

进入node3机器flink的配置目录

[hadoop@node3 ~]$ cd ~/soft/flink-1.17.1/conf/

配置flinke-conf.yaml文件

[hadoop@node3 conf]$ vim flink-conf.yaml

taskmanager.host的值修改为node3

taskmanager.host: node3

node4

进入node4机器flink的配置目录

[hadoop@node4 ~]$ cd ~/soft/flink-1.17.1/conf/

配置flinke-conf.yaml文件

[hadoop@node4 conf]$ vim flink-conf.yaml

taskmanager.host的值修改为node4

taskmanager.host: node4

配置node3、node4的环境变量

分别到node3、node4机器配置环境变量

sudo nano /etc/profile.d/my_env.sh

添加如下配置

#FLINK_HOME
export FLINK_HOME=/home/hadoop/soft/flink-1.17.1
export PATH=$PATH:$FLINK_HOME/bin

让环境变量生效

source /etc/profile

验证版本号

flink -v

看到Version: 1.17.1版本号字样,说明环境变量配置成功。

启动flink集群

在node2机器,执行如下命令启动集群

[hadoop@node2 conf]$ start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host node2.
Starting taskexecutor daemon on host node2.
Starting taskexecutor daemon on host node3.
Starting taskexecutor daemon on host node4.

查看进程

分别在node2、node3、node4机器上执行jps查看进程

[hadoop@node2 conf]$ jps
2311 StandaloneSessionClusterEntrypoint
2793 Jps
2667 TaskManagerRunner
​
[hadoop@node3 conf]$ jps
1972 TaskManagerRunner
2041 Jps
​
[hadoop@node4 conf]$ jps
2038 Jps
1965 TaskManagerRunner
​

node2有StandaloneSessionClusterEntrypointTaskManagerRunner进程

node3有TaskManagerRunner进程

node4有TaskManagerRunner进程

看到如上进程,说明flink集群配置成功。

Web UI

浏览器访问

node2的ip:8081

或者使用主机名称代替ip访问

node2:8081

注意:如果用windows的浏览器访问,需要先在windows的hosts文件添加ip和主机名node2的映射。

关闭flink集群

[hadoop@node2 ~]$ stop-cluster.sh 
Stopping taskexecutor daemon (pid: 2667) on host node2.
Stopping taskexecutor daemon (pid: 1972) on host node3.
Stopping taskexecutor daemon (pid: 1965) on host node4.
Stopping standalonesession daemon (pid: 2311) on host node2.

查看进程

[hadoop@node2 ~]$ jps
4215 Jps
​
[hadoop@node3 ~]$ jps
2387 Jps
​
[hadoop@node4 ~]$ jps
2383 Jps
​

单独启动/关闭flink进程

单独启动flink进程

$ jobmanager.sh start
$ taskmanager.sh start

node2

[hadoop@node2 ~]$ jobmanager.sh start
Starting standalonesession daemon on host node2.
[hadoop@node2 ~]$ jps
4507 StandaloneSessionClusterEntrypoint
4572 Jps
​
[hadoop@node2 ~]$ taskmanager.sh start
Starting taskexecutor daemon on host node2.
[hadoop@node2 ~]$ jps
4867 TaskManagerRunner
4507 StandaloneSessionClusterEntrypoint
4940 Jps
​

node3

[hadoop@node3 ~]$ taskmanager.sh start
Starting taskexecutor daemon on host node3.
[hadoop@node3 ~]$ jps
2695 TaskManagerRunner
2764 Jps
​

node4

[hadoop@node4 ~]$ taskmanager.sh start
Starting taskexecutor daemon on host node4.
[hadoop@node4 ~]$ jps
2691 TaskManagerRunner
2755 Jps
​

单独关闭flink进程

$ jobmanager.sh stop
$ taskmanager.sh stop

node4

[hadoop@node4 ~]$ taskmanager.sh stop
Stopping taskexecutor daemon (pid: 2691) on host node4.
[hadoop@node4 ~]$ jps
3068 Jps

node3

[hadoop@node3 ~]$ taskmanager.sh stop
Stopping taskexecutor daemon (pid: 2695) on host node3.
[hadoop@node3 ~]$ jps
3073 Jps

node2

[hadoop@node2 ~]$ taskmanager.sh stop
Stopping taskexecutor daemon (pid: 4867) on host node2.
[hadoop@node2 ~]$ jobmanager.sh stop
Stopping standalonesession daemon (pid: 4507) on host node2.
[hadoop@node2 ~]$ jps
5545 Jps

提交应用测试

启动flink集群

[hadoop@node2 ~]$ start-cluster.sh 

运行flink提供的wordcount案例程序

[hadoop@node2 ~]$ cd $FLINK_HOME/
[hadoop@node2 flink-1.17.1]$ flink run examples/streaming/WordCount.jar
Executing example with default input data.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID 845db6f62321830f287e71b525e87dbe
Program execution finished
Job with JobID 845db6f62321830f287e71b525e87dbe has finished.
Job Runtime: 1290 ms
​

查看结果

查看输出的wordcount结果的末尾10行数据

[hadoop@node2 flink-1.17.1]$ tail log/flink-*-taskexecutor-*.out
(nymph,1)
(in,3)
(thy,1)
(orisons,1)
(be,4)
(all,2)
(my,1)
(sins,1)
(remember,1)
(d,4)

Web UI查看作业

查看作业

查看作业结果

在Task Managers 的node2上可以查看到作业的结果

分别查看Task Managers 的node3、node4的输出结果

可以看到,三台Task Manager机器中,只有node2机器有结果,说明,本次wordcount计算只用到了node2进行计算。

总结:至此,flink进程正常,可以提交应用到fink集群运行,同时能查看到相应计算结果,说明集群功能正常。

完成!enjoy it!

这篇关于CentOS7安装flink1.17完全分布式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872523

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.