STM32应用开发——使用PWM+DMA驱动WS2812

2024-04-03 08:52

本文主要是介绍STM32应用开发——使用PWM+DMA驱动WS2812,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32应用开发——使用PWM+DMA驱动WS2812

目录

  • STM32应用开发——使用PWM+DMA驱动WS2812
    • 前言
    • 1 硬件介绍
      • 1.1 WS2812介绍
        • 1.1.1 芯片简介
        • 1.1.2 引脚描述
        • 1.1.3 工作原理
        • 1.1.4 时序
        • 1.1.5 传输协议
      • 1.2 电路设计
    • 2 软件编程
      • 2.1 软件原理
      • 2.2 测试代码
        • 2.2.1 底层驱动
        • 2.2.2 灯效应用
      • 2.3 运行测试
        • 2.3.1 时序测试
        • 2.3.2 实际效果
    • 结束语

前言

串行灯带的应用十分广泛,其中以WS2812最为经典,这种灯带一般都是通过单总线的方式来驱动,也就是由一根数据线按照特定的时序输出,继而驱动灯带。这种方式在硬件和软件上都非常简单,但是如果软件用GPIO模拟时序的话比较占用主线程的资源,因此,如果能用硬件外设(比如PWM、SPI、串口)来模拟出这个时序,就能节省MCU的资源。
本文以PWM+DMA为例介绍如何驱动WS2812。

1 硬件介绍

1.1 WS2812介绍

1.1.1 芯片简介

WS2812是一款智能控制LED光源,其外观采用最新的MOLDING封装技术、控制电路和RGB芯片集成在2020组件的封装中。其内部包括智能数字端口数据锁存和信号整形放大驱动电路。还包括精密内部振荡器和电压可编程恒流控制部分,有效保证像素点光源的颜色。

1.1.2 引脚描述
引脚名称描述
DO数据输出控制数据输出到下一个芯片
GND电源负极
DI数据输入控制数据输入
VDD电源电源正极
1.1.3 工作原理

通过级联法把每个灯的DI和DO引脚首尾相连,数据可以从第一个IC开始,不断的传输到后面每一个IC,从而实现整条灯带的控制。
在这里插入图片描述

1.1.4 时序

WS2812通过不同的时序来表示0码1码复位码,如下图所示:
在这里插入图片描述
其中各信号的电平如下图所示:
在这里插入图片描述
注:不同型号的芯片在时序上会有点差异,具体以芯片数据手册为准。

1.1.5 传输协议

传输过程如下图所示:
在这里插入图片描述

每一个灯珠的RGB数据排列如下:
在这里插入图片描述

1.2 电路设计

WS2812的控制方法很简单,每个灯珠首尾相接进行级联即可,如下图所示:
在这里插入图片描述
其中,第一个灯珠的DI引脚接入到MCU的一个GPIO上面。

我这里使用STM32F103来作为主控MCU,引脚接线如下:

MCU引脚灯带引脚描述
PA0DI由MCU发送控制信号输入到灯带

2 软件编程

2.1 软件原理

通过DMA可以精确控制PWM输出的每一个方波,然后通过调整占空比,就可以输出0码1码复位码,从而实现灯珠的驱动。
举个例子:按照上面的手册的时序要求,每一个逻辑电平周期在1.25us左右,也就是800kHz,那么PWM输出的频率就可以设置为800kHz。此时改变PWM的占空比,就可以区分编码“0”和编码“1”,比如编码“0”的高电平脉宽和低电平脉宽分别为0.4us和0.85us,那么对应的PWM占空比就是32%和68%,然后通过DMNA连续传输RGB数据就可以实现灯带的颜色和亮度控制。

测试电平时序如下:

逻辑电平脉宽PWM占空比
逻辑0高电平0.40±0.15us32%
逻辑0低电平0.85±0.15us68%
逻辑1高电平0.85±0.15us68%
逻辑1低电平0.40±0.15us32%
复位低电平1.25±0.60us0%

2.2 测试代码

根据上述原理,编写测试代码。

2.2.1 底层驱动

ws2812_driver.h :

#ifndef __WS2812_DRIVER_H
#define __WS2812_DRIVER_H#include "stm32f10x.h"
#include "stm32f10x_conf.h"#define TIM2_CCR1_Address 0x40000034  // stm32 tim2 base address offset 0x34#define LED_NUM     8    // LED的数量
#define RGB_BIT     24   // 每个灯有24bit的RGB数据,依次按G R B排列#define RESET_WORD  5    // 在传输RGB数据前保持一段低电平
#define DUMMY_WORD  5    // 在传输RGB数据后保持一段低电平#define TIMING_0    29   // T0H(32%) = 1.25us * (29 / 90) = 0.40us, T0L(68%) = 1.25 - 0.40 = 0.85us 
#define TIMING_1    61   // T1H(68%) = 1.25us * (61 / 90) = 0.85us, T1L(32%) = 1.25 - 0.85 = 0.40us void led_display(uint8_t (*led_buf)[3], uint8_t led_num);
void ws2812_init(void);#endif

ws2812_driver.c :

#include "ws2812_driver.h"
#include "string.h"uint16_t pwm_dma_buf[RESET_WORD + RGB_BIT * LED_NUM + DUMMY_WORD];void pwm_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;			GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_ResetBits(GPIOA, GPIO_Pin_0);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);TIM_TimeBaseStructure.TIM_Period = 90 - 1;     // 72MHz / 90 = 800kHzTIM_TimeBaseStructure.TIM_Prescaler = 0;TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* PWM2 Mode configuration: Channel1 */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 50;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);// TIM_ARRPreloadConfig(TIM2, ENABLE);/* TIM2 enable counter */TIM_Cmd(TIM2, ENABLE);
}void pwm_dma_init(void)
{/* configure DMA */DMA_InitTypeDef DMA_InitStructure;//定义DMA初始化结构体/* DMA clock enable */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);	//使能DMA时钟(用于SPI的数据传输)memset((uint8_t*)&pwm_dma_buf, 0, sizeof(pwm_dma_buf));/* DMA1 Channel5 Config for PWM2 by TIM2_CH1*/DMA_DeInit(DMA1_Channel5);DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)TIM2_CCR1_Address;	// physical address of Timer 3 CCR1DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&pwm_dma_buf;		// this is the buffer memory DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;						// data shifted from memory to peripheralDMA_InitStructure.DMA_BufferSize = sizeof(pwm_dma_buf)/2;DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;					// automatically increase buffer indexDMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;							// stop DMA feed after buffer size is reachedDMA_InitStructure.DMA_Priority = DMA_Priority_Medium;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel5, &DMA_InitStructure);/* TIM2 DMA Request enable */TIM_DMACmd(TIM2, TIM_DMA_CC1, ENABLE);TIM_DMACmd(TIM2, TIM_DMA_Update, ENABLE);
}void pwm_dma_send(void)
{DMA_SetCurrDataCounter(DMA1_Channel5, sizeof(pwm_dma_buf)/2); 	// load number of bytes to be transferredDMA_Cmd(DMA1_Channel5, ENABLE); 			// enable DMA channel 5TIM_Cmd(TIM2, ENABLE); 						// enable Timer 2while(!DMA_GetFlagStatus(DMA1_FLAG_TC5)) ; 	// wait until transfer completeDMA_Cmd(DMA1_Channel5, DISABLE); 			// disable DMA channel 5DMA_ClearFlag(DMA1_FLAG_TC5); 				// clear DMA1 Channel 5 transfer complete flagTIM_Cmd(TIM2, DISABLE); 	// disable Timer 2
}void led_display(uint8_t (*led_buf)[3], uint8_t led_num)
{uint8_t i, j;// led_buf -> pwm_dma_buffor(i = 0; i < led_num; i++){// N ledfor(j = 0; j < 8; j++){// 1 color -> 8bit// gpwm_dma_buf[RESET_WORD+RGB_BIT*i+j] = ((led_buf[i][1] << j) & 0x80) ? TIMING_1 : TIMING_0;// rpwm_dma_buf[RESET_WORD+RGB_BIT*i+j+8] = ((led_buf[i][0] << j) & 0x80) ? TIMING_1 : TIMING_0;// bpwm_dma_buf[RESET_WORD+RGB_BIT*i+j+16] = ((led_buf[i][2] << j) & 0x80) ? TIMING_1 : TIMING_0;}}// pwm startpwm_dma_send();
}void ws2812_init(void)
{pwm_init();pwm_dma_init();
}
2.2.2 灯效应用

ws2812_app.h :

#ifndef __WS2812_APP_H
#define __WS2812_APP_H#include "stm32f10x.h"
#include "stm32f10x_conf.h"
#include "ws2812_driver.h"typedef enum 
{LED_MODE_OFF,LED_MODE_ALL_ON,	LED_MODE_BREATHE,	LED_MODE_GRADIENT,LED_MODE_FLOW,	
}led_mode_t;typedef struct
{led_mode_t mode;  uint8_t g;                uint8_t r;              uint8_t b;              uint8_t brightness;  
}led_t;void led_init(void);
void led_handle(void);#endif

ws2812_app.c :

#include "ws2812_app.h"led_t led;
uint8_t rgb_buf[LED_NUM][3];void led_init(void)
{ws2812_init();led.mode = LED_MODE_ALL_ON;led.r = 0x00;led.g = 0xE0;led.b = 0x80;
}void led_handle(void)
{uint8_t i;switch (led.mode){case LED_MODE_OFF:for (i = 0; i < LED_NUM; i++){rgb_buf[i][0] = 0;  // rrgb_buf[i][1] = 0;  // grgb_buf[i][2] = 0;  // b}break;case LED_MODE_ALL_ON:for (i = 0; i < LED_NUM; i++){rgb_buf[i][0] = led.r;  // rrgb_buf[i][1] = led.g;  // grgb_buf[i][2] = led.b;  // b}break;// ......可以自己加入更多的灯效default:break;}led_display(rgb_buf, LED_NUM);
}

main.c :

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "ws2812_app.h"int main(void)
{SystemInit();delay_init();led_init();while(1){led_handle();delay_ms(5);}
}

2.3 运行测试

2.3.1 时序测试

使用逻辑分析仪抓取信号,得到的结果如下:

  1. 8个LED连续写入RGB值:
    在这里插入图片描述

  2. 编码1高电平(T1H)850ns:
    在这里插入图片描述

  3. 编码1低电平(T1L)400ns:
    在这里插入图片描述

  4. 编码1周期1.25us:
    在这里插入图片描述

  5. 编码0高电平(T0H)400ns:
    在这里插入图片描述

  6. 编码0高电平(T0H)850ns:
    在这里插入图片描述

  7. 编码0周期1.25us:
    在这里插入图片描述

结论:实际输出的波形和理论一致。

2.3.2 实际效果

用在线颜色选取器把代码设置的颜色值输入进去,得到该颜色,然后和实际灯带点亮的颜色比对。

  1. 颜色拾取器显示如下:
    在这里插入图片描述
  2. 实际灯带颜色如下:
    在这里插入图片描述

结论:灯带实际显示的颜色准确无误。

结束语

关于stm32如何使用PWM+DMA驱动WS2812的讲解就到这里,如果还有什么问题,欢迎在评论区留言。

源码下载链接

如果这篇文章能够帮到你,就…你懂的。
在这里插入图片描述

这篇关于STM32应用开发——使用PWM+DMA驱动WS2812的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872463

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有