STM32应用开发——使用PWM+DMA驱动WS2812

2024-04-03 08:52

本文主要是介绍STM32应用开发——使用PWM+DMA驱动WS2812,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32应用开发——使用PWM+DMA驱动WS2812

目录

  • STM32应用开发——使用PWM+DMA驱动WS2812
    • 前言
    • 1 硬件介绍
      • 1.1 WS2812介绍
        • 1.1.1 芯片简介
        • 1.1.2 引脚描述
        • 1.1.3 工作原理
        • 1.1.4 时序
        • 1.1.5 传输协议
      • 1.2 电路设计
    • 2 软件编程
      • 2.1 软件原理
      • 2.2 测试代码
        • 2.2.1 底层驱动
        • 2.2.2 灯效应用
      • 2.3 运行测试
        • 2.3.1 时序测试
        • 2.3.2 实际效果
    • 结束语

前言

串行灯带的应用十分广泛,其中以WS2812最为经典,这种灯带一般都是通过单总线的方式来驱动,也就是由一根数据线按照特定的时序输出,继而驱动灯带。这种方式在硬件和软件上都非常简单,但是如果软件用GPIO模拟时序的话比较占用主线程的资源,因此,如果能用硬件外设(比如PWM、SPI、串口)来模拟出这个时序,就能节省MCU的资源。
本文以PWM+DMA为例介绍如何驱动WS2812。

1 硬件介绍

1.1 WS2812介绍

1.1.1 芯片简介

WS2812是一款智能控制LED光源,其外观采用最新的MOLDING封装技术、控制电路和RGB芯片集成在2020组件的封装中。其内部包括智能数字端口数据锁存和信号整形放大驱动电路。还包括精密内部振荡器和电压可编程恒流控制部分,有效保证像素点光源的颜色。

1.1.2 引脚描述
引脚名称描述
DO数据输出控制数据输出到下一个芯片
GND电源负极
DI数据输入控制数据输入
VDD电源电源正极
1.1.3 工作原理

通过级联法把每个灯的DI和DO引脚首尾相连,数据可以从第一个IC开始,不断的传输到后面每一个IC,从而实现整条灯带的控制。
在这里插入图片描述

1.1.4 时序

WS2812通过不同的时序来表示0码1码复位码,如下图所示:
在这里插入图片描述
其中各信号的电平如下图所示:
在这里插入图片描述
注:不同型号的芯片在时序上会有点差异,具体以芯片数据手册为准。

1.1.5 传输协议

传输过程如下图所示:
在这里插入图片描述

每一个灯珠的RGB数据排列如下:
在这里插入图片描述

1.2 电路设计

WS2812的控制方法很简单,每个灯珠首尾相接进行级联即可,如下图所示:
在这里插入图片描述
其中,第一个灯珠的DI引脚接入到MCU的一个GPIO上面。

我这里使用STM32F103来作为主控MCU,引脚接线如下:

MCU引脚灯带引脚描述
PA0DI由MCU发送控制信号输入到灯带

2 软件编程

2.1 软件原理

通过DMA可以精确控制PWM输出的每一个方波,然后通过调整占空比,就可以输出0码1码复位码,从而实现灯珠的驱动。
举个例子:按照上面的手册的时序要求,每一个逻辑电平周期在1.25us左右,也就是800kHz,那么PWM输出的频率就可以设置为800kHz。此时改变PWM的占空比,就可以区分编码“0”和编码“1”,比如编码“0”的高电平脉宽和低电平脉宽分别为0.4us和0.85us,那么对应的PWM占空比就是32%和68%,然后通过DMNA连续传输RGB数据就可以实现灯带的颜色和亮度控制。

测试电平时序如下:

逻辑电平脉宽PWM占空比
逻辑0高电平0.40±0.15us32%
逻辑0低电平0.85±0.15us68%
逻辑1高电平0.85±0.15us68%
逻辑1低电平0.40±0.15us32%
复位低电平1.25±0.60us0%

2.2 测试代码

根据上述原理,编写测试代码。

2.2.1 底层驱动

ws2812_driver.h :

#ifndef __WS2812_DRIVER_H
#define __WS2812_DRIVER_H#include "stm32f10x.h"
#include "stm32f10x_conf.h"#define TIM2_CCR1_Address 0x40000034  // stm32 tim2 base address offset 0x34#define LED_NUM     8    // LED的数量
#define RGB_BIT     24   // 每个灯有24bit的RGB数据,依次按G R B排列#define RESET_WORD  5    // 在传输RGB数据前保持一段低电平
#define DUMMY_WORD  5    // 在传输RGB数据后保持一段低电平#define TIMING_0    29   // T0H(32%) = 1.25us * (29 / 90) = 0.40us, T0L(68%) = 1.25 - 0.40 = 0.85us 
#define TIMING_1    61   // T1H(68%) = 1.25us * (61 / 90) = 0.85us, T1L(32%) = 1.25 - 0.85 = 0.40us void led_display(uint8_t (*led_buf)[3], uint8_t led_num);
void ws2812_init(void);#endif

ws2812_driver.c :

#include "ws2812_driver.h"
#include "string.h"uint16_t pwm_dma_buf[RESET_WORD + RGB_BIT * LED_NUM + DUMMY_WORD];void pwm_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;			GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_ResetBits(GPIOA, GPIO_Pin_0);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);TIM_TimeBaseStructure.TIM_Period = 90 - 1;     // 72MHz / 90 = 800kHzTIM_TimeBaseStructure.TIM_Prescaler = 0;TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* PWM2 Mode configuration: Channel1 */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 50;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);// TIM_ARRPreloadConfig(TIM2, ENABLE);/* TIM2 enable counter */TIM_Cmd(TIM2, ENABLE);
}void pwm_dma_init(void)
{/* configure DMA */DMA_InitTypeDef DMA_InitStructure;//定义DMA初始化结构体/* DMA clock enable */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);	//使能DMA时钟(用于SPI的数据传输)memset((uint8_t*)&pwm_dma_buf, 0, sizeof(pwm_dma_buf));/* DMA1 Channel5 Config for PWM2 by TIM2_CH1*/DMA_DeInit(DMA1_Channel5);DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)TIM2_CCR1_Address;	// physical address of Timer 3 CCR1DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&pwm_dma_buf;		// this is the buffer memory DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;						// data shifted from memory to peripheralDMA_InitStructure.DMA_BufferSize = sizeof(pwm_dma_buf)/2;DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;					// automatically increase buffer indexDMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;							// stop DMA feed after buffer size is reachedDMA_InitStructure.DMA_Priority = DMA_Priority_Medium;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel5, &DMA_InitStructure);/* TIM2 DMA Request enable */TIM_DMACmd(TIM2, TIM_DMA_CC1, ENABLE);TIM_DMACmd(TIM2, TIM_DMA_Update, ENABLE);
}void pwm_dma_send(void)
{DMA_SetCurrDataCounter(DMA1_Channel5, sizeof(pwm_dma_buf)/2); 	// load number of bytes to be transferredDMA_Cmd(DMA1_Channel5, ENABLE); 			// enable DMA channel 5TIM_Cmd(TIM2, ENABLE); 						// enable Timer 2while(!DMA_GetFlagStatus(DMA1_FLAG_TC5)) ; 	// wait until transfer completeDMA_Cmd(DMA1_Channel5, DISABLE); 			// disable DMA channel 5DMA_ClearFlag(DMA1_FLAG_TC5); 				// clear DMA1 Channel 5 transfer complete flagTIM_Cmd(TIM2, DISABLE); 	// disable Timer 2
}void led_display(uint8_t (*led_buf)[3], uint8_t led_num)
{uint8_t i, j;// led_buf -> pwm_dma_buffor(i = 0; i < led_num; i++){// N ledfor(j = 0; j < 8; j++){// 1 color -> 8bit// gpwm_dma_buf[RESET_WORD+RGB_BIT*i+j] = ((led_buf[i][1] << j) & 0x80) ? TIMING_1 : TIMING_0;// rpwm_dma_buf[RESET_WORD+RGB_BIT*i+j+8] = ((led_buf[i][0] << j) & 0x80) ? TIMING_1 : TIMING_0;// bpwm_dma_buf[RESET_WORD+RGB_BIT*i+j+16] = ((led_buf[i][2] << j) & 0x80) ? TIMING_1 : TIMING_0;}}// pwm startpwm_dma_send();
}void ws2812_init(void)
{pwm_init();pwm_dma_init();
}
2.2.2 灯效应用

ws2812_app.h :

#ifndef __WS2812_APP_H
#define __WS2812_APP_H#include "stm32f10x.h"
#include "stm32f10x_conf.h"
#include "ws2812_driver.h"typedef enum 
{LED_MODE_OFF,LED_MODE_ALL_ON,	LED_MODE_BREATHE,	LED_MODE_GRADIENT,LED_MODE_FLOW,	
}led_mode_t;typedef struct
{led_mode_t mode;  uint8_t g;                uint8_t r;              uint8_t b;              uint8_t brightness;  
}led_t;void led_init(void);
void led_handle(void);#endif

ws2812_app.c :

#include "ws2812_app.h"led_t led;
uint8_t rgb_buf[LED_NUM][3];void led_init(void)
{ws2812_init();led.mode = LED_MODE_ALL_ON;led.r = 0x00;led.g = 0xE0;led.b = 0x80;
}void led_handle(void)
{uint8_t i;switch (led.mode){case LED_MODE_OFF:for (i = 0; i < LED_NUM; i++){rgb_buf[i][0] = 0;  // rrgb_buf[i][1] = 0;  // grgb_buf[i][2] = 0;  // b}break;case LED_MODE_ALL_ON:for (i = 0; i < LED_NUM; i++){rgb_buf[i][0] = led.r;  // rrgb_buf[i][1] = led.g;  // grgb_buf[i][2] = led.b;  // b}break;// ......可以自己加入更多的灯效default:break;}led_display(rgb_buf, LED_NUM);
}

main.c :

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "ws2812_app.h"int main(void)
{SystemInit();delay_init();led_init();while(1){led_handle();delay_ms(5);}
}

2.3 运行测试

2.3.1 时序测试

使用逻辑分析仪抓取信号,得到的结果如下:

  1. 8个LED连续写入RGB值:
    在这里插入图片描述

  2. 编码1高电平(T1H)850ns:
    在这里插入图片描述

  3. 编码1低电平(T1L)400ns:
    在这里插入图片描述

  4. 编码1周期1.25us:
    在这里插入图片描述

  5. 编码0高电平(T0H)400ns:
    在这里插入图片描述

  6. 编码0高电平(T0H)850ns:
    在这里插入图片描述

  7. 编码0周期1.25us:
    在这里插入图片描述

结论:实际输出的波形和理论一致。

2.3.2 实际效果

用在线颜色选取器把代码设置的颜色值输入进去,得到该颜色,然后和实际灯带点亮的颜色比对。

  1. 颜色拾取器显示如下:
    在这里插入图片描述
  2. 实际灯带颜色如下:
    在这里插入图片描述

结论:灯带实际显示的颜色准确无误。

结束语

关于stm32如何使用PWM+DMA驱动WS2812的讲解就到这里,如果还有什么问题,欢迎在评论区留言。

源码下载链接

如果这篇文章能够帮到你,就…你懂的。
在这里插入图片描述

这篇关于STM32应用开发——使用PWM+DMA驱动WS2812的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872463

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected