【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】

本文主要是介绍【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 【可更换其他算法,`获取资源`请见文章第5节:资源获取】
    • 1. 基础灰狼算法
    • 2. 三维覆盖模型
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取


【可更换其他算法,获取资源请见文章第5节:资源获取】


1. 基础灰狼算法

比较常见,此处不再介绍。

2. 三维覆盖模型

三维覆盖模型如下面图1所示。
在这里插入图片描述

由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以 R c o v R_{cov} Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒 N N N个传感器节点,形成节点集 S = { s 1 , s 2 , . . . , s N } (1) S=\left \{ s_{1},s_{2},...,s_{N} \right \} \tag{1} S={s1,s2,...,sN}(1)
其中,第 i i i个节点的坐标为 s i ( x i , y i , z i ) s_{i}(x_{i},y_{i},z_{i}) si(xi,yi,zi)。三维监控节点集合为 L = { l 1 , l 2 , . . . , l N } (2) L=\left \{ l_{1},l_{2},...,l_{N} \right \} \tag{2} L={l1,l2,...,lN}(2)其中,三维监测区域内某个目标点为 l v ( x v , y v , z v ) l_{v}(x_{v},y_{v},z_{v}) lv(xv,yv,zv),三维监控点与目标点的距离为:
d ( s i , l v ) = ( x i − x v ) 2 + ( y i − y v ) 2 + ( z i − z v ) 2 (3) d(s_{i},l_{v})=\sqrt{(x_{i}-x_{v})^{2}+ (y_{i}-y_{v})^{2}+(z_{i}-z_{v})^{2}} \tag{3} d(si,lv)=(xixv)2+(yiyv)2+(zizv)2 (3)
d ( s i , l v ) ≤ R s d(s_{i},l_{v})\le R_{s} d(si,lv)Rs,则目标点在三维覆盖区域内,感知度标记为1;相反,则在三维覆盖区域之外,感知度标记为0。采用布尔感知模型,感知度为:
p ( s i , l v ) = { 1 , d ( s i , l v ) ≤ R S 0 , d ( s i , l v ) > R S (4) p(s_{i},l_{v})=\left\{\begin{matrix} 1,d(s_{i},l_{v})\le R_{S} \\ 0,d(s_{i},l_{v})> R_{S} \end{matrix}\right. \tag{4} p(si,lv)={1,d(si,lv)RS0,d(si,lv)>RS(4)
其中,R_{s}为节点的通信半径,假设三维网络中有 k k k个 待测节点 s 1 , s 2 , . . . , s k s_{1},s_{2},...,s_{k} s1,s2,...,sk,对应点 l l l的覆盖率分别为 p ( s i , l v ) p(s_{i},l_{v}) p(si,lv),其中 k a l l k_{all} kall是监测区域内所有待测传感器节点, R p ( k a l l , l v ) R_{p}(k_{all},l_{v}) Rp(kall,lv)为联合感知概率,表达式为:
R p ( k a l l , l v ) = 1 − ∏ i = 1 k ( 1 − p ( s i , l v ) ) (5) R_{p}(k_{all},l_{v})=1-\prod_{i=1}^{k}(1-p(s_{i},l_{v})) \tag{5} Rp(kall,lv)=1i=1k(1p(si,lv))(5)
网络整体覆盖率为:
R c o v = ∑ i = 1 k R p ( k a l l , l v ) k (6) R_{cov}=\frac{\sum_{i=1}^{k}R_{p}(k_{all},l_{v}) }{k} \tag{6} Rcov=ki=1kRp(kall,lv)(6)
其中, R c o v R_{cov} Rcov是传感器网络的整体覆盖率, P P P为区域中的任意一个监测点。以覆盖率为适应度函数,可以检验无线传感网络覆盖性能。

3. 部分代码展示

for i = 1 : SearchAgents_noPositionsX( i, : ) = lb + (ub - lb) .* rand( 1, dim ); PositionsY( i, : ) = lb + (ub - lb) .* rand( 1, dim );PositionsZ( i, : ) = lb + (ub - lb) .* rand( 1, dim );Fitness(i)=feval(objfun,PositionsX( i, : ),PositionsY( i, : ),PositionsZ( i, : ),dim,r,d);% 得到1行20列的向量,20个蜜源的覆盖率
end% [ ObjMax, ObjbestI ] = max( Fitness );
[ fMax, fbestI ] = max( Fitness );
bestX = PositionsX( fbestI, : ); 
bestY = PositionsY( fbestI, : ); 
bestZ = PositionsZ( fbestI, : );
% 画图
figure(1)
for i=1:dimx = bestX(1,i);y = bestY(1,i);z = bestZ(1,i);cc(x,y,z,r);hold on;
end
xlabel('X(m)');
ylabel('Y(m)');
zlabel('Z(m)');
title('优化前覆盖效果');

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取

可更换其他群智能算法,获取完整代码资源。👇👇👇👀名片

这篇关于【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/871334

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪