【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】

本文主要是介绍【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 【可更换其他算法,`获取资源`请见文章第5节:资源获取】
    • 1. 基础灰狼算法
    • 2. 三维覆盖模型
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取


【可更换其他算法,获取资源请见文章第5节:资源获取】


1. 基础灰狼算法

比较常见,此处不再介绍。

2. 三维覆盖模型

三维覆盖模型如下面图1所示。
在这里插入图片描述

由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以 R c o v R_{cov} Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒 N N N个传感器节点,形成节点集 S = { s 1 , s 2 , . . . , s N } (1) S=\left \{ s_{1},s_{2},...,s_{N} \right \} \tag{1} S={s1,s2,...,sN}(1)
其中,第 i i i个节点的坐标为 s i ( x i , y i , z i ) s_{i}(x_{i},y_{i},z_{i}) si(xi,yi,zi)。三维监控节点集合为 L = { l 1 , l 2 , . . . , l N } (2) L=\left \{ l_{1},l_{2},...,l_{N} \right \} \tag{2} L={l1,l2,...,lN}(2)其中,三维监测区域内某个目标点为 l v ( x v , y v , z v ) l_{v}(x_{v},y_{v},z_{v}) lv(xv,yv,zv),三维监控点与目标点的距离为:
d ( s i , l v ) = ( x i − x v ) 2 + ( y i − y v ) 2 + ( z i − z v ) 2 (3) d(s_{i},l_{v})=\sqrt{(x_{i}-x_{v})^{2}+ (y_{i}-y_{v})^{2}+(z_{i}-z_{v})^{2}} \tag{3} d(si,lv)=(xixv)2+(yiyv)2+(zizv)2 (3)
d ( s i , l v ) ≤ R s d(s_{i},l_{v})\le R_{s} d(si,lv)Rs,则目标点在三维覆盖区域内,感知度标记为1;相反,则在三维覆盖区域之外,感知度标记为0。采用布尔感知模型,感知度为:
p ( s i , l v ) = { 1 , d ( s i , l v ) ≤ R S 0 , d ( s i , l v ) > R S (4) p(s_{i},l_{v})=\left\{\begin{matrix} 1,d(s_{i},l_{v})\le R_{S} \\ 0,d(s_{i},l_{v})> R_{S} \end{matrix}\right. \tag{4} p(si,lv)={1,d(si,lv)RS0,d(si,lv)>RS(4)
其中,R_{s}为节点的通信半径,假设三维网络中有 k k k个 待测节点 s 1 , s 2 , . . . , s k s_{1},s_{2},...,s_{k} s1,s2,...,sk,对应点 l l l的覆盖率分别为 p ( s i , l v ) p(s_{i},l_{v}) p(si,lv),其中 k a l l k_{all} kall是监测区域内所有待测传感器节点, R p ( k a l l , l v ) R_{p}(k_{all},l_{v}) Rp(kall,lv)为联合感知概率,表达式为:
R p ( k a l l , l v ) = 1 − ∏ i = 1 k ( 1 − p ( s i , l v ) ) (5) R_{p}(k_{all},l_{v})=1-\prod_{i=1}^{k}(1-p(s_{i},l_{v})) \tag{5} Rp(kall,lv)=1i=1k(1p(si,lv))(5)
网络整体覆盖率为:
R c o v = ∑ i = 1 k R p ( k a l l , l v ) k (6) R_{cov}=\frac{\sum_{i=1}^{k}R_{p}(k_{all},l_{v}) }{k} \tag{6} Rcov=ki=1kRp(kall,lv)(6)
其中, R c o v R_{cov} Rcov是传感器网络的整体覆盖率, P P P为区域中的任意一个监测点。以覆盖率为适应度函数,可以检验无线传感网络覆盖性能。

3. 部分代码展示

for i = 1 : SearchAgents_noPositionsX( i, : ) = lb + (ub - lb) .* rand( 1, dim ); PositionsY( i, : ) = lb + (ub - lb) .* rand( 1, dim );PositionsZ( i, : ) = lb + (ub - lb) .* rand( 1, dim );Fitness(i)=feval(objfun,PositionsX( i, : ),PositionsY( i, : ),PositionsZ( i, : ),dim,r,d);% 得到1行20列的向量,20个蜜源的覆盖率
end% [ ObjMax, ObjbestI ] = max( Fitness );
[ fMax, fbestI ] = max( Fitness );
bestX = PositionsX( fbestI, : ); 
bestY = PositionsY( fbestI, : ); 
bestZ = PositionsZ( fbestI, : );
% 画图
figure(1)
for i=1:dimx = bestX(1,i);y = bestY(1,i);z = bestZ(1,i);cc(x,y,z,r);hold on;
end
xlabel('X(m)');
ylabel('Y(m)');
zlabel('Z(m)');
title('优化前覆盖效果');

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取

可更换其他群智能算法,获取完整代码资源。👇👇👇👀名片

这篇关于【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/871334

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

全屋WiFi 7无死角! 华硕 RP-BE58无线信号放大器体验测评

《全屋WiFi7无死角!华硕RP-BE58无线信号放大器体验测评》家里网络总是有很多死角没有网,我决定入手一台支持Mesh组网的WiFi7路由系统以彻底解决网络覆盖问题,最终选择了一款功能非常... 自2023年WiFi 7技术标准(IEEE 802.11be)正式落地以来,这项第七代无线网络技术就以超高速

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可