LST数据集介绍与下载

2024-04-02 17:52
文章标签 数据 介绍 下载 lst

本文主要是介绍LST数据集介绍与下载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LST数据集

20个LST数据产品
中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2022)

GLASS地表温度产品(Land Surface Temperature,简称LST)
GLASS产品集目前有二套瞬时LST产品。第一套是利用一种多算法集成方法,针对单一反演算法在大观测角度和高水汽含量情况下反演精度低的问题,将9种常见的分裂窗算法采用集成方法构建LST多算法集成反演模型。另一套AVHRR LST产品是基于一个改进型通用劈窗算法(Liu等,2019)。该算法是在通用劈窗算法的基础上增加了两个热红外通道亮温差的二次项,进而提高了原算法在高水汽含量下的反演精度。
马里兰大学GLASS产品

MODIS——NASA
TERRA为上午星,从北向南于地方时10:30左右通过赤道,AQUA为下午星,从南向北于地方时13:30左右通过赤道。主要下载的是MOD A11全球1km数据( MOD11 A1为地表温度和发射率日产品,产品己经进行了几何校正与辐射校正,投影坐标为球面曲线正弦投影,空间分辨率为1000m。
MODIS与Landsat获取LST数据

GEE——Modis_LST地表温度产品时间序列分析
Landsat
Landsat Land Surface Temperature线上交互
Landsat轨道查询

二、 GEE下载10mLST

GEE在2021年的时候就已经将Landsat8数据整合到C02数据集中, Landsat8数据的L2级产品的热红外波段ST_B10就直接对应着地表温度,只需简单计算即可获取摄氏度

var geometry = ee.FeatureCollection("projects/ee-wn1206/assets/beijing_urban").geometry();// A function that scales and masks Landsat 8 (C2) surface reflectance images.function prepSrL8(image) {// Bit 0 - Fill// Bit 1 - Dilated Cloud// Bit 2 - Cirrus// Bit 3 - Cloud// Bit 4 - Cloud Shadow// Develop masks for unwanted pixels (fill, cloud, cloud shadow).var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);//this is what is used ,this is cloud maskvar saturationMask = image.select('QA_RADSAT').eq(0);//0=no saturation// Apply the scaling factors to the appropriate bands.var getFactorImg = function(factorNames) {var factorList = image.toDictionary().select(factorNames).values();return ee.Image.constant(factorList);};var scaleImg = getFactorImg(['REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']);var offsetImg = getFactorImg(['REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']);var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg);// Replace original bands with scaled bands and apply masks.return image.addBands(scaled, null, true).updateMask(qaMask).updateMask(saturationMask);}//scale function for landsat 4,5,7function maskL457sr(image) {// Bit 0 - Fill// Bit 1 - Dilated Cloud// Bit 2 - Unused// Bit 3 - Cloud// Bit 4 - Cloud Shadowvar qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);var saturationMask = image.select('QA_RADSAT').eq(0);// Apply the scaling factors to the appropriate bands.var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);var thermalBand = image.select('ST_B6').multiply(0.00341802).add(149.0);// Replace the original bands with the scaled ones and apply the masks.return image.addBands(opticalBands, null, true).addBands(thermalBand, null, true).updateMask(qaMask).updateMask(saturationMask);}//select year// var selectyear = 2019// Landsat 8 Collection 2 surface reflectance images of interest:2013-2020var dataset = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2').filterBounds(geometry).filter(ee.Filter.calendarRange(2020, 2022, 'year'))// .filterDate(selectyear+'-03-01', selectyear+'-05-30')//.filter(ee.Filter.calendarRange(1, 2, 'month')).filter(ee.Filter.or(ee.Filter.calendarRange(12, 12, 'month'),ee.Filter.calendarRange(1, 2, 'month'))// .filter(ee.Filter.eq('TARGET_WRS_ROW', 32)).filter(ee.Filter.eq('TARGET_WRS_PATH', 123)).filter(ee.Filter.lt('CLOUD_COVER', 20))print(dataset);var LSTcol=dataset.map(prepSrL8).select('ST_B10').mean().clip(geometry);//.reduce(ee.Reducer.percentile([50]))//对某个图像集合或图像进行中位数计算,返回一个新的图像或图像集合Map.centerObject(geometry)  Map.addLayer(geometry)Map.addLayer(LSTcol, {min: 260,max: 310, palette:['blue', 'cyan', 'green', 'yellow', 'red']}, 'LST8');print(LSTcol,"LSTcol") Export.image.toDrive({image: LSTcol,description: 'LST_winter',scale: 30,folder: "L8_beijing_LST",region: geometry,maxPixels: 1e13,crs: "EPSG:4326",fileFormat: 'GeoTIFF'
});

其他算法

LANDSAT/LC08/C02/T1_L2 10米分辨率

GEE code下载
基于GEE-Landsat8数据集地表温度反演(LST热度计算

依据文献
Google Earth Engine实现Landsat单窗算法地表温度LST自动反演

基于C++的landsat单通道算法温度反演

这篇关于LST数据集介绍与下载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870656

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很