GMM聚类算法(公式证明分析)

2024-04-02 12:32

本文主要是介绍GMM聚类算法(公式证明分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高斯分布

p ( x ∣ μ , σ 2 ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) p(x|\mu, \sigma^2)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) p(xμ,σ2)=2π σ1exp(2σ2(xμ)2)

d维多元高斯分布
p ( x ∣ μ , ∑ ) = 1 2 π d 2 ∣ ∑ ∣ 1 2 e x p ( − 1 2 ( x − μ ) ∑ ( x − μ ) ) p(x|\mu, \sum)=\frac{1}{{2\pi}^{\frac{d}{2}}|\sum|^{\frac{1}{2}}}exp(-\frac{1}{2}\frac{(x-\mu)}{\sum(x-\mu)}) p(xμ,)=2π2d211exp(21(xμ)(xμ))

对d维做极大似然估计:

给定数据 D = x 1 , . . . , x N D={x_1,..., x_N} D=x1,...,xN似然是 p ( D ∣ μ , ∑ ) = ∏ n = 1 N p ( x n ∣ μ , ∑ ) p(D|\mu,\sum) = \prod_{n=1}^{N}p(x_n | \mu, \sum) p(Dμ,)=n=1Np(xnμ,)

MLE 估计:
( μ M L , ∑ M L ) = a r g m a x μ , ∑ l o g p ( D ∣ μ , ∑ ) (\mu_{ML},\sum{ML}) = \underset{\mu, \sum}{argmax}logp(D|\mu,\sum) (μML,ML)=μ,argmaxlogp(Dμ,),
μ M L = 1 N ∑ n = 1 N x n \mu_{ML} = \frac{1}{N}\sum_{n=1}^{N}x_n μML=N1n=1Nxn
( ∑ M L ) 2 = 1 N ∑ n = 1 N ( x n − μ M L ) ( x n − μ M L ) T (\sum ML)^2 = \frac{1}{N}\sum_{n=1}^{N}(x_n-\mu_{ML})(x_n-\mu_{ML})^T (ML)2=N1n=1N(xnμML)(xnμML)T

为什么使用高斯分布

如何p(x,y)联合分布是高斯分布,那么p(x)是高斯分布,同样p(y)也是高斯分布。

混合高斯分布

单个高斯分布只有一个mode,单个高斯分布不能模拟多个mode的数据。
使用多个高斯分布,就可以对数据进行聚类。

单峰的高斯分布作为basis 分布,多个高斯分布使用线性叠加(这种思路类似boost的想法),即混合高斯。
p ( x ) = ∑ k = 1 K π k N ( x ∣ μ k , σ k 2 ) p(x) = \sum_{k=1}^{K}\pi_k\mathbb{N}(x|\mu_k, \sigma^2_k) p(x)=k=1KπkN(xμk,σk2)
π k \pi_k πk有约束, ∑ π k = 1 \sum\pi_k=1 πk=1

学习混合高斯分布

Log -likehood

log似然:
£ ( μ , ∑ ) = l o g p ( D ∣ π , μ , ∑ ) = ∑ n = 1 N l o g ( ∑ k = 1 K π k N ( x ∣ μ k , ∑ k ) \pounds(\mu, \sum) = log p(D|\pi,\mu,\sum) = \sum_{n=1}^{N}log(\sum_{k=1}^K \pi_k\mathbb{N}({x|\mu_k,\sum _k}) £(μ,)=logp(Dπ,μ,)=n=1Nlog(k=1KπkN(xμk,k)

但是MLE是复杂的,对于单个高斯分布,MLE是简单的。

简单的分析:

  • ∂ £ ∂ μ k = 0 \frac{\partial \pounds}{\partial \mu_k} = 0 μk£=0得到
    ∑ n = 1 N = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) ( ∑ k ( x n − μ k ) ) − 1 \sum_{n=1}^{N} = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})}(\sum_k(x_n-\mu_k))^{-1} n=1N=jπjN(xnμk,k)πkN(xnμk,k)(k(xnμk))1

γ ( z n k ) = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) \gamma (z_{nk}) = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} γ(znk)=jπjN(xnμk,k)πkN(xnμk,k)

μ k = 1 N k ∑ n = 1 N γ ( z n k ) x n \mu_k = \frac{1}{N_k}\sum_{n=1}^{N}\gamma (z_{nk})x_n μk=Nk1n=1Nγ(znk)xn,

N k = ∑ n = 1 N γ ( z n k ) N_k= \sum_{n=1}^{N}\gamma (z_{nk}) Nk=n=1Nγ(znk) , N k N_k Nk是所有数据拟合到k分布上面的权重和。

这里的 μ k \mu_k μk也是 1 N k \frac{1}{N_k} Nk1求均。

  • ∂ £ ∂ ∑ k = 0 \frac{\partial \pounds}{\partial \sum_k} = 0 k£=0得到

∑ k = 1 N k ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T \sum_k = \frac{1}{N_k}\sum_{n=1}^N \gamma(z_{nk})(x_n-\mu_k)(x_n - \mu_k)^T k=Nk1n=1Nγ(znk)(xnμk)(xnμk)T

  • ∂ L ∂ π k = 0 \frac{\partial L}{\partial \pi_k} =0 πkL=0

由于对 π k \pi_k πk有约束, ∑ π k = 1 \sum\pi_k=1 πk=1,使用拉格朗日求 π k \pi_k πk
L = £ ( μ , ∑ ) + λ ( ∑ k = 1 K π k − 1 ) L = \pounds(\mu, \sum)+\lambda(\sum_{k=1}^K\pi_k -1) L=£(μ,)+λ(k=1Kπk1)

∑ n = 1 N N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) + λ = 0 \sum_{n=1}^N \frac{\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} + \lambda=0 n=1NjπjN(xnμk,k)N(xnμk,k)+λ=0

π k = N k N \pi_k=\frac{N_k}{N} πk=NNk

综上结果

π k = N k N \pi_k=\frac{N_k}{N} πk=NNk
μ k = 1 N k ∑ n = 1 N γ ( z n k ) x n \mu_k = \frac{1}{N_k}\sum_{n=1}^{N}\gamma (z_{nk})x_n μk=Nk1n=1Nγ(znk)xn
∑ k = 1 N k ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T \sum_k = \frac{1}{N_k}\sum_{n=1}^N \gamma(z_{nk})(x_n-\mu_k)(x_n - \mu_k)^T k=Nk1n=1Nγ(znk)(xnμk)(xnμk)T

γ ( z n k ) = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) \gamma (z_{nk}) = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} γ(znk)=jπjN(xnμk,k)πkN(xnμk,k)

关键是求,但是 γ ( z n k ) \gamma (z_{nk}) γ(znk) 是未知的。

EM算法引入

解决上面鸡生蛋,蛋生鸡的 γ ( z n k ) \gamma (z_{nk}) γ(znk)求解。
E-step

γ ( z n k ) = π k N ( x n ∣ μ k , ∑ k ) ∑ j π j N ( x n ∣ μ k , ∑ k ) \gamma (z_{nk}) = \frac{\pi_k\mathbb{N}({x_n|\mu_k,\sum _k})}{\sum_j\pi_j\mathbb{N}({x_n|\mu_k,\sum _k})} γ(znk)=jπjN(xnμk,k)πkN(xnμk,k), γ \gamma γ实际上是后验分布,假设第n个样本拟合到k分布上面 p ( z n k = 1 ∣ x n , μ , ∑ ) p(z_{nk}=1 | x_n, \mu, \sum) p(znk=1xn,μ,)

M-step

π k = N k N \pi_k=\frac{N_k}{N} πk=NNk
μ k = 1 N k ∑ n = 1 N γ ( z n k ) x n \mu_k = \frac{1}{N_k}\sum_{n=1}^{N}\gamma (z_{nk})x_n μk=Nk1n=1Nγ(znk)xn
∑ k = 1 N k ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T \sum_k = \frac{1}{N_k}\sum_{n=1}^N \gamma(z_{nk})(x_n-\mu_k)(x_n - \mu_k)^T k=Nk1n=1Nγ(znk)(xnμk)(xnμk)T
不断的迭代E步和M步进行计算,这里初始点的选取会影响混合高斯聚类的结果。

理解高斯分布

对于 p ( x ) = ∑ k = 1 K π k N ( x ∣ μ k , ∑ k ) p(x) = \sum_{k=1}^{K}\pi_k \mathbb{N}(x|\mu_k, \sum_k) p(x)=k=1KπkN(xμk,k)引入选择变量z
z = ( 0 1 0 ) z = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} z=010

p ( x , z ) = ∑ k = 1 K π k z k N ( x ∣ μ k , ∑ k ) z k p(x,z) = \sum_{k=1}^{K}\pi_k^{z_k} \mathbb{N}(x|\mu_k, \sum_k)^{z_k} p(x,z)=k=1KπkzkN(xμk,k)zk

  • 重新定义log-likehood
    l o g p ( D ∣ Θ ) = ∑ n = 1 N l o g ( ∑ z n p ( x n , z n ) ) logp(D|\Theta )=\sum_{n=1}^Nlog(\sum_{z_n}p(x_n, z_n)) logp(DΘ)=n=1Nlog(znp(xn,zn))

这里的 l o g ∑ log\sum log是很难求导的,所以我们使用Jensen不等式近似
l o g x 1 + x 2 2 ≥ l o g x 1 + l o g x 2 2 log\frac{x_1+x_2}{2} \geq \frac{logx_1 + logx_2}{2} log2x1+x22logx1+logx2 或者使用期望的表示方法 l o g E p ( x ) [ x ] ≥ E p ( x ) [ l o g x ] logE_{p(x)}[x] \geq E_{p(x)}[logx] logEp(x)[x]Ep(x)[logx]
引入 q ( z n ) q(z_n) q(zn)(在机器学习里面称为 Evidence lower bound):
l o g p ( D ∣ Θ ) = ∑ n = 1 N l o g ( ∑ z n q ( z n ) p ( x n , z n ) q ( z n ) ) ≥ ∑ n = 1 N ∑ z n q ( z n ) l o g ( p ( x n , z n ) q ( z n ) ) ≅ £ ( θ , q ( Z ) ) logp(D|\Theta )=\sum_{n=1}^Nlog(\sum_{z_n}q(z_n)\frac{p(x_n, z_n)}{q(z_n)}) \geq \sum_{n=1}^N\sum_{z_n}q(z_n)log(\frac{p(x_n,z_n)}{q(z_n)}) \cong \pounds(\theta , q(Z)) logp(DΘ)=n=1Nlog(znq(zn)q(zn)p(xn,zn))n=1Nznq(zn)log(q(zn)p(xn,zn))£(θ,q(Z))
q 一般意义上称为变分分布(变分的方法)。
但是lower bound 是可紧可松的,如何约定GAP
£ ( θ , q ( Z ) ) = ∑ n = 1 N { ∑ z n q ( z n ) l o g p ( x n , z n ) − ∑ z n q ( z n ) l o g q ( z n ) } = ∑ n = 1 N { ∑ z n q ( z n ) l o g ( p ( x n , z n ) p ( x n ) ) + l o g p ( x n ) − ∑ z n q ( z n ) l o g q ( z n ) } = l o g p ( D ∣ θ ) + ∑ n = 1 N { ∑ z n q ( z n ) l o g p ( z n ∣ x n ) − ∑ z n q ( z n ) l o g q ( z n ) } = l o g p ( D ∣ θ ) − K L ( q ( Z ) ∣ ∣ p ( Z ∣ D ) ) \pounds(\theta , q(Z))=\sum_{n=1}^N\left \{\sum_{z_n}q(z_n)logp(x_n,z_n) - \sum_{z_n}q(z_n)logq(z_n)\right \}\\ = \sum_{n=1}^N \left \{ \sum_{z_n}q(z_n)log(\frac{p(x_n,z_n)}{p(x_n)}) +logp(x_n) - \sum_{z_n}q(z_n)logq(z_n) \right \}\\ =logp(D|\theta) + \sum_{n=1}^N \left \{ \sum_{z_n}q(z_n)logp(z_n|x_n) -\sum_{z_n}q(z_n)logq(z_n) \right \}\\ =logp(D|\theta) - KL(q(Z)||p(Z|D)) £(θ,q(Z))=n=1N{znq(zn)logp(xn,zn)znq(zn)logq(zn)}=n=1N{znq(zn)log(p(xn)p(xn,zn))+logp(xn)znq(zn)logq(zn)}=logp(Dθ)+n=1N{znq(zn)logp(znxn)znq(zn)logq(zn)}=logp(Dθ)KL(q(Z)p(ZD))
上式中 l o g p ( D ∣ θ ) = ∑ n = 1 N l o g p ( x n ) logp(D|\theta) = \sum_{n=1}^Nlogp(x_n) logp(Dθ)=n=1Nlogp(xn)

所以lower bound的GAP是一个KL散度。
£ ( θ , q ( Z ) ) \pounds(\theta , q(Z)) £(θ,q(Z)) l o g p ( D ∣ θ ) logp(D|\theta) logp(Dθ)之间的GAP是KL散度,
l o g p ( D ∣ θ ) − £ ( θ , q ( Z ) ) = K L ( q ( Z ) ∣ ∣ p ( Z ∣ D ) ) logp(D|\theta) - \pounds(\theta , q(Z)) = KL(q(Z)||p(Z|D)) logp(Dθ)£(θ,q(Z))=KL(q(Z)p(ZD))
要使得GAP最小,则 K L ( q ( Z ) ∣ ∣ p ( Z ∣ D ) ) = 0 KL(q(Z)||p(Z|D)) =0 KL(q(Z)p(ZD))=0

  • EM算法
    最大化lower bound或者最小化GAP

E 步:
Maximize over q(Z) -> ∂ £ ∂ q = 0 \frac{\partial \pounds}{\partial q} =0 q£=0
其中 q ( z n ) = p ( z n ∣ x n ) q(z_n) = p(z_n|xn) q(zn)=p(znxn)等价与前面的 γ ( z n k ) \gamma(z_{nk}) γ(znk)

M 步:
Maximize over θ \theta θ -> ∂ £ ∂ θ = 0 \frac{\partial \pounds}{\partial \theta} =0 θ£=0

这篇关于GMM聚类算法(公式证明分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869986

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1