tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现

2024-04-02 07:38

本文主要是介绍tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要讲述了使用tf.keras实现一个简单的单边量线性回归f(x)=ax+b的过程

打开Anaconda,进入tensflow环境,打开JupyterLab

1.查看tensorflow版本的方法

import tensorflow as tf #tensorflow引用方式
print(tf.__version__)  #tensorflow版本

import tensorflow as tf 
print('Tensorflow Version:{}'.format(tf.__version__))

运行结果如下:
在这里插入图片描述

2.单边量线性回归

单变量线性回归算法f(x)=ax+b(比如,x表示教育水平,y表示收入),映射了输入特征和输出值
(1)读取数据集
使用panadas读取数据集

import pandas as pd
data = pd.read_csv('./Desktop/income2.csv')#读取放置在桌面,名称为income2,格式为csv的文件
dataopen

运行结果如下图:
在这里插入图片描述
数据集:可以在Excel中自行输入数据,保存为csv格式的数据集即可,下面是本文所使用的的数据集,任意数据集均可
在这里插入图片描述
(2)基于数据集绘图
从上面的数据集我们可以看出,教育水平越高,收入也变得越高,我们可以认为这两者之间有线性关系,这种线性关系可以通过绘图进行认识,我们基于matplotlib进行绘图

import pandas as pd
data = pd.read_csv('./Desktop/income2.csv')import matplotlib.pyplot as plt 
%matplotlib inline
plt.scatter(data.Education, data.Income)#data.Education为x轴,data.Income为y轴,scatter为散点图

运行结果如下图:
在这里插入图片描述
由上图我们可以看到,教育水平和收入近似满足一个线性关系,这个线性关系可以用f(x)=ax+b进行描述。
下面我们需要建立一个预测模型对其进行描述,建立此模型的过程即求解该线性关系的过程,这样我们就建立起了一个简单的机器学习模型
(3)模型建立
预测目标:预测函数f(x)与真实值之间的整体性误差最小,即找到一个最能拟合散点图的f(x)
损失函数:使用均方差作为成本函数,也就是预测值和真实值之间差的平方取均值
优化目标:使得均方差(f(x)-y)*2越小越好
在这里插入图片描述

%config IPCompleter. greedy=True  #TAB键代码自动提示
#使用tf.keras实现一个简单的单边量线性回归f(x)=ax+b
import pandas as pd
import tensorflow as tf 
data = pd.read_csv('./Desktop/income2.csv')import matplotlib.pyplot as plt 
%matplotlib inline
#plt.scatter(data.Education, data.Income)#data.Education为x轴,data.Income为y轴x = data.Education
y = data.Income
model = tf.keras.Sequential()#初始化Sequential模型,一种顺序模型
#此时这个模型中什么也没有,接下来需要对模型添加层
#layers中有很多层,比较常用的一种是Dense层
model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
#f(x)=ax+b为一维,写入1;输入数据形状input_shape也是一维(元组形式)
model.summary()#反映整个模型
model.compile(optimizer='adam',loss='mse')#编译模型,使用optimizer优化算法
history = model.fit(x, y, epochs=2000)#训练2000次

运行结果如下图:
在这里插入图片描述
在这里插入图片描述
后面的运行结果省略

可以看到,训练次数越多,损失值越小

(4)模型预测

model.predict(pd.Series([20]))#预测教育水平为20时的收入

运行结果如下:
在这里插入图片描述
即模型预测教育水平为20时,收入为34.39621

这篇关于tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869376

相关文章

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat