tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现

2024-04-02 07:38

本文主要是介绍tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要讲述了使用tf.keras实现一个简单的单边量线性回归f(x)=ax+b的过程

打开Anaconda,进入tensflow环境,打开JupyterLab

1.查看tensorflow版本的方法

import tensorflow as tf #tensorflow引用方式
print(tf.__version__)  #tensorflow版本

import tensorflow as tf 
print('Tensorflow Version:{}'.format(tf.__version__))

运行结果如下:
在这里插入图片描述

2.单边量线性回归

单变量线性回归算法f(x)=ax+b(比如,x表示教育水平,y表示收入),映射了输入特征和输出值
(1)读取数据集
使用panadas读取数据集

import pandas as pd
data = pd.read_csv('./Desktop/income2.csv')#读取放置在桌面,名称为income2,格式为csv的文件
dataopen

运行结果如下图:
在这里插入图片描述
数据集:可以在Excel中自行输入数据,保存为csv格式的数据集即可,下面是本文所使用的的数据集,任意数据集均可
在这里插入图片描述
(2)基于数据集绘图
从上面的数据集我们可以看出,教育水平越高,收入也变得越高,我们可以认为这两者之间有线性关系,这种线性关系可以通过绘图进行认识,我们基于matplotlib进行绘图

import pandas as pd
data = pd.read_csv('./Desktop/income2.csv')import matplotlib.pyplot as plt 
%matplotlib inline
plt.scatter(data.Education, data.Income)#data.Education为x轴,data.Income为y轴,scatter为散点图

运行结果如下图:
在这里插入图片描述
由上图我们可以看到,教育水平和收入近似满足一个线性关系,这个线性关系可以用f(x)=ax+b进行描述。
下面我们需要建立一个预测模型对其进行描述,建立此模型的过程即求解该线性关系的过程,这样我们就建立起了一个简单的机器学习模型
(3)模型建立
预测目标:预测函数f(x)与真实值之间的整体性误差最小,即找到一个最能拟合散点图的f(x)
损失函数:使用均方差作为成本函数,也就是预测值和真实值之间差的平方取均值
优化目标:使得均方差(f(x)-y)*2越小越好
在这里插入图片描述

%config IPCompleter. greedy=True  #TAB键代码自动提示
#使用tf.keras实现一个简单的单边量线性回归f(x)=ax+b
import pandas as pd
import tensorflow as tf 
data = pd.read_csv('./Desktop/income2.csv')import matplotlib.pyplot as plt 
%matplotlib inline
#plt.scatter(data.Education, data.Income)#data.Education为x轴,data.Income为y轴x = data.Education
y = data.Income
model = tf.keras.Sequential()#初始化Sequential模型,一种顺序模型
#此时这个模型中什么也没有,接下来需要对模型添加层
#layers中有很多层,比较常用的一种是Dense层
model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
#f(x)=ax+b为一维,写入1;输入数据形状input_shape也是一维(元组形式)
model.summary()#反映整个模型
model.compile(optimizer='adam',loss='mse')#编译模型,使用optimizer优化算法
history = model.fit(x, y, epochs=2000)#训练2000次

运行结果如下图:
在这里插入图片描述
在这里插入图片描述
后面的运行结果省略

可以看到,训练次数越多,损失值越小

(4)模型预测

model.predict(pd.Series([20]))#预测教育水平为20时的收入

运行结果如下:
在这里插入图片描述
即模型预测教育水平为20时,收入为34.39621

这篇关于tensorflow入门笔记(一)单边量线性回归f(x)=ax+b的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869376

相关文章

Java实现视频格式转换的完整指南

《Java实现视频格式转换的完整指南》在Java中实现视频格式的转换,通常需要借助第三方工具或库,因为视频的编解码操作复杂且性能需求较高,以下是实现视频格式转换的常用方法和步骤,需要的朋友可以参考下... 目录核心思路方法一:通过调用 FFmpeg 命令步骤示例代码说明优点方法二:使用 Jaffree(FF

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Java实现图片淡入淡出效果

《Java实现图片淡入淡出效果》在现代图形用户界面和游戏开发中,**图片淡入淡出(FadeIn/Out)**是一种常见且实用的视觉过渡效果,它可以用于启动画面、场景切换、轮播图、提示框弹出等场景,通过... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细

Python实现获取带合并单元格的表格数据

《Python实现获取带合并单元格的表格数据》由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,所以本文我们就来聊聊如何使用Python实现获取带合并单元格的表格数据吧... 由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,现将将封装成类,并通过调用list_exc

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五