【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型

2024-04-02 05:12

本文主要是介绍【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型

BRT,即Boosted Regression Trees(增强回归树),是一种用于回归问题的集成学习方法。它结合了多个决策树模型,通过逐步改进的方式来提高整体模型的预测性能。BRT的核心思想是利用多个弱学习器(在这个情况下是决策树)的组合来构建一个强学习器。

一、模型介绍

1、工作原理

BRT的工作原理基于提升(Boosting)策略,特别是AdaBoost(Adaptive Boosting)算法的变种。在每一轮迭代中,BRT都会执行以下步骤:

初始化数据权重分布:开始时,每个训练样本都被赋予相等的权重。

构建决策树:使用当前的数据权重分布来训练一个新的决策树。这个决策树通常是一个简单的、深度较浅的树,被称为弱学习器。

计算预测误差:评估新训练的决策树在整个数据集上的预测误差。

更新数据权重:根据预测误差,增加那些被错误分类的样本的权重,减少正确分类的样本的权重。这样,接下来的迭代将更加关注那些难以正确预测的样本。

减弱预测误差:将每个决策树的预测误差进行缩减,以防止过拟合。这通常通过一个学习率参数来控制。

累加模型预测:将新训练的决策树的预测结果与之前所有迭代中的树的预测结果相加,形成最终的模型预测。

这个过程会重复进行,直到达到预定的迭代次数或者模型性能不再显著提升。

2、特点

适应性强:BRT能够适应各种类型的数据,包括连续型和分类型变量。
处理缺失值:BRT可以处理数据中的缺失值,这在实际应用中非常有用。
提供概率输出:BRT可以输出分类问题的概率估计,而不仅仅是硬分类结果。
可解释性:虽然BRT是一个集成模型,但它的组成单元是决策树,因此相比其他集成方法如随机森林或梯度提升树,BRT的可解释性更强。

3、应用

BRT在各种回归问题中都有广泛的应用,包括但不限于:

预测房价
销售预测
能源消耗预测
生物统计学中的数据分析
优势与局限性

4、优势:

BRT通过集成多个决策树来提高预测精度。
能够处理复杂的数据集,包括非线性和高维数据。
可以自然地处理不同类型的数据,包括数值型和类别型数据。

5、局限性:

相对于单棵树或浅层模型,BRT模型可能更容易过拟合,尤其是在数据量较少的情况下。
模型的训练和预测过程可能需要较长的计算时间,特别是当树的数量较多时。
总的来说,BRT是一种强大的集成学习方法,适用于各种回归问题,并且在实际应用中表现出色。然而,为了获得最佳性能,可能需要仔细调整模型参数,并根据具体问题进行模型选择和优化。

二、代码实现

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';% BRT模型参数
leafNum=50; %最大叶节点数量
treeNum=1000;%种群数
nu=0.1;%更新系数
%训练模型  %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output)';
T_sim2 = mapminmax('reverse', t_sim2, ps_output)';%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

三、效果展示

在这里插入图片描述

四、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“102期”以及相应指令,即可获取对应下载方式。

这篇关于【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869056

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应