如何评估基于指令微调的视觉语言模型的各项能力-MMBench论文解读

本文主要是介绍如何评估基于指令微调的视觉语言模型的各项能力-MMBench论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 传统基准的固有局限

  1. VQAv2:视觉问题回答数据集,主要用于评估视觉理解与推理能力。
  2. COCO Caption:图像描述生成数据集,用于评估模型对图像内容的理解与描述能力。
  3. GQA:结合常识的视觉问题回答数据集。
  4. OK-VQA:需要外部知识的视觉问题回答数据集。
  5. TextVQA:图像中包含文本的问题回答数据集。
  6. 主观性基准(例如mPLUG-Owl等):依赖人类评估

这些传统基准测试存在以下问题:

  1. 评价指标要求预测与参考答案完全匹配,可能导致许多误判样本。
  2. 基准测试侧重评估特定任务,无法对模型的多方面能力进行细粒度评估。
  3. 提供的反馈有限,难以指导模型的进一步优化。

本文提出的观点:论文链接:https://arxiv.org/pdf/2307.06281.pdf

2. 本文摘要

MMBench,是一个针对大规模多模态模型的新型评估基准。随着视觉语言模型在感知和推理能力方面的显著进步,如何有效地评估这些模型成为了一个主要难题。传统基准如VQAv2和COCO Caption提供了定量性能测量,但在细粒度能力和鲁棒性评估指标方面存在不足。而像OwlEval这样的主观性基准虽然能够全面评价模型能力,但其可扩展性差且易受偏见影响。

MMBench设计了一套综合的评估流水线,包含两大核心元素:

  • 一是精心构建的超越现有同类基准的数据集,该数据集包括2,974个经过细致挑选的问题,覆盖了20种不同类型的细粒度技能;
  • 二是引入了创新的CircularEval策略,并结合使用ChatGPT技术来将模型生成的自由格式预测转化为预定义选项,以实现对模型预测的更可靠评估。

通过MMBench对14个知名视觉语言模型进行全面评估后发现,现有模型在多项选择题上的表现普遍不尽人意,大多数模型在MMBench测试集上面对最多4个选项的选择题时,Top-1准确率未达到50%,表明当前VLMs在应对不同提示下的预测一致性以及跨实例理解与逻辑推理等方面的能力有限。特别是跨实例理解和逻辑推理能力显得尤为薄弱,需要作为未来研究的重要方向加以改进。

此外,文档提到对象定位数据的引入有望提高模型性能,其中Kosmos-2和Shikra等模型在应用了此类数据后显示出明显的性能提升。同时,文中列举了多个视觉语言模型及其参数规模,并报告了它们在MMBench开发集上的具体表现,强调了采用更加严格、合理的CircularEval评估策略的重要性。


 

3. 核心知识点

  1. 视觉语言模型评估挑战
    • 文章指出当前大规模视觉语言模型的发展迅速,但对其有效评估仍是一大挑战。
  • 传统评估基准(如VQAv2、COCO Caption)侧重于定量性能指标,但缺乏对模型细粒度能力的精细评估及评估指标的鲁棒性。
  1. MMBench基准介绍ÿ

这篇关于如何评估基于指令微调的视觉语言模型的各项能力-MMBench论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/868866

相关文章

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结