算法沉淀 —— 深度搜索(dfs)

2024-04-01 19:36
文章标签 算法 搜索 深度 dfs 沉淀

本文主要是介绍算法沉淀 —— 深度搜索(dfs),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀 —— 深度搜索(dfs)

  • 一、计算布尔二叉树的值
  • 二、求根节点到叶节点数字之和
  • 三、二叉树剪枝
  • 四、验证二叉搜索树
  • 五、二叉搜索树中第K小的元素

一、计算布尔二叉树的值

【题目链接】:2331. 计算布尔二叉树的值
【题目】:
在这里插入图片描述

【分析】:
 在确定一颗二叉树的布尔值前,我们需要先得到左子树、右子树的结果(0/1)。如果左子树、右子树不是叶子节点,显然这是一个递归子问题(将求左子树、右子树的布尔值);
 最后就是根据root的值来判断对左/右子树结果的操作(如果是2,按位或;否则为按位与)

【代码实现】:

class Solution {
public:bool evaluateTree(TreeNode* root) {if(root->left == nullptr && root->right == nullptr)return root->val;//完成二叉树保证如果非叶子节点,则左右子树都不为空bool ansL = evaluateTree(root->left);//递归处理左子树bool ansR = evaluateTree(root->right);//递归处理右子树return root->val == 2 ? ansL | ansR : ansL & ansR;}
};

二、求根节点到叶节点数字之和

【题目链接】:129. 求根节点到叶节点数字之和

【题目】:
在这里插入图片描述

【分析】:
 根节点到叶节点数字之和,显然如果当前节点为叶子节点,此时直接返回结果;否则需要得到当前路径之前路径和(假设为prev),此时当前路径数字和为root->val + prev*10。此时在重复上述过程,如果时叶子节点,直接返回结果;否则转化为递归子问题求解(左子树、右子树只有非空,都有结果)
由于根节点到叶节点的路径可能存在多条,每一条路径都存在一个结果。所以这里我们可以定义一个全局变量来记录最后的累计结果(具体看代码)
【代码实现】:

class Solution {
public:int sum = 0;int sumNumbers(TreeNode* root) {int prev = 0;_sumNumbers(root, 0);//prev用于记录当前节点前的路径和return sum;}void _sumNumbers(TreeNode* root, int prev){prev = prev * 10 + root->val;//还是使用prev来保存当前路径数字和if(root->left)//左子树非空,必然存在结果,转化成递归子问题求解_sumNumbers(root->left, prev);if(root->right)//右子树非空,同上_sumNumbers(root->right, prev);if(root->left == nullptr && root->right == nullptr)//叶子节点, 累加当前路径和sum += prev;}
};

三、二叉树剪枝

【题目链接】:814. 二叉树剪枝
【题目】:
在这里插入图片描述
在这里插入图片描述
【分析】:
 本题中,我们可以采用二叉树后序遍历的思想。先对左子树、右子树分别进行剪枝操作。此时左/右子树中有两种结果:非空、非空(此时子树已经进行了剪枝)。所以此时当前节点必须满足左/右子树均为空,并且根节点为0时,才可继续剪枝。
【代码实现】:

class Solution {
public:TreeNode* pruneTree(TreeNode* root) {//二叉树后序遍历,进行剪枝//对左/右子树剪枝后,左/右子树只有两种结果: 为空、剪完枝非空。if(root == nullptr)return nullptr;root->left = pruneTree(root->left);//对左子树剪枝root->right = pruneTree(root->right);//右子树剪枝if(root->left == nullptr && root->right == nullptr && root->val == 0){delete root;//笔试建议省略此步,原因在于如果root不是new出来的,会报错root = nullptr;}return root;}
};

四、验证二叉搜索树

【题目链接】:98. 验证二叉搜索树
【题目】:
在这里插入图片描述
在这里插入图片描述

【分析】:
 我们可以利用二叉搜索树中序遍历是升序的性质来判断是否为二叉搜索树。但如何利用呢?
 其中一种思路是先用一个数组记录二叉树中序遍历结果,在判断是否为升序。但此时算法的空间复杂度为O(n)。
 另一种思路就是使用一个全局遍历(prev)来记录中序遍历的前一个数据,然后转化成当前节点和prev比较(当然还有prev值更新啦)。让后根据左子树、右子树、根节点的结果来判断是否符合AVL树(具体参考代码)
tips:

  • prev的初始值需要设置为LLONG_MIN(比INT_MIN小即可)。
    【代码实现】:
class Solution {
public:long long prev = LLONG_MIN;//保存中序遍历的前一个节点值bool isValidBST(TreeNode* root) {if(root == nullptr)return true;bool Left = isValidBST(root->left);//记录左子树结果bool cur = false;//记录当前根节点和上一个数据是否符合AVL树性质if(root->val > prev){prev = root->val;cur = true;}bool Right = isValidBST(root->right);//记录左子树结果return Left && Right && cur;}
};

五、二叉搜索树中第K小的元素

【题目链接】:230. 二叉搜索树中第K小的元素
【题目】:
在这里插入图片描述

在这里插入图片描述
【分析】:
 本题意思非常明确,求第k小元素。我们可以通过中序遍历,每遍历一次元素,k–。直到k为1时,返回结果。
 这里博主推荐将返回值(定义为ret)、和k的值都设置为全局变量。然后和中序遍历一样,我们只需当k的值为1时,返回结果结果;并且每次遍历k–。
【代码实现】:

class Solution {
public:int count = 0, ret = 0;int kthSmallest(TreeNode* root, int k) {count = k;_kthSmallest(root);return ret;}void _kthSmallest(TreeNode* root){if(root == nullptr || count == 0)return;_kthSmallest(root->left);if(--count == 0)ret = root->val;_kthSmallest(root->right);}
};

这篇关于算法沉淀 —— 深度搜索(dfs)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/867969

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实