算法学习——LeetCode力扣动态规划篇9(1035. 不相交的线、53. 最大子数组和、392. 判断子序列、115. 不同的子序列)

本文主要是介绍算法学习——LeetCode力扣动态规划篇9(1035. 不相交的线、53. 最大子数组和、392. 判断子序列、115. 不同的子序列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法学习——LeetCode力扣动态规划篇9

在这里插入图片描述

1035. 不相交的线

1035. 不相交的线 - 力扣(LeetCode)

描述

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例

示例 1:
在这里插入图片描述

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

提示

1 <= nums1.length, nums2.length <= 500
1 <= nums1[i], nums2[j] <= 2000

代码解析

动态规划

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列 就是一样一样的了。

class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size()+1 , vector<int>(nums2.size()+1,0));for(int i=0 ; i<nums1.size();i++){for(int j=0 ; j<nums2.size();j++){if(nums1[i]==nums2[j])dp[i+1][j+1] = dp[i][j]+1;elsedp[i+1][j+1] = max(dp[i+1][j] , dp[i][j+1]);}}// for(int i=0 ; i<nums1.size();i++)// {//     for(int j=0 ; j<nums2.size();j++)//     {//         cout<<dp[i][j]<<' ';//     }//     cout<<endl;// }return dp[nums1.size()][nums2.size()];}
};

53. 最大子数组和

53. 最大子数组和 - 力扣(LeetCode)

描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组
是数组中的一个连续部分。

示例

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示

1 <= nums.length <= 105
-104 <= nums[i] <= 104

代码解析

贪心算法
class Solution {
public:int maxSubArray(vector<int>& nums) {int sum=0 ,result= INT32_MIN;      //sum是当前数组的和,result是sum中最大的时候for(int i=0 ; i<nums.size() ;i++){sum += nums[i];  //记录当前的sumif(sum > result) result= sum;  //如果sum大于当前result,更新resultif(sum < 0) sum = 0;  //某一个时期的sum小于0舍去}return result;}
};
动态规划
class Solution {
public:int maxSubArray(vector<int>& nums) {vector<int>  dp(nums.size() ,0);int result = INT_MIN;dp[0]= nums[0];for(int i=1 ; i<nums.size() ;i++){dp[i] = max(nums[i],dp[i-1]+nums[i]);}for(int i=0 ; i<nums.size() ;i++) {// cout<<dp[i]<<' ';if(dp[i] > result) result = dp[i];}return result;}
};

392. 判断子序列

392. 判断子序列 - 力扣(LeetCode)

描述

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

进阶

如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

示例

示例 1:

输入:s = “abc”, t = “ahbgdc”
输出:true

示例 2:

输入:s = “axc”, t = “ahbgdc”
输出:false

提示

0 <= s.length <= 100
0 <= t.length <= 10^4
两个字符串都只由小写字符组成。

代码解析

动态规划
class Solution {
public:bool isSubsequence(string s, string t) {if(s.size()==0&&t.size()!=0) return true;if(s.size()==0&&t.size()==0) return true;if(s.size()!=0&&t.size()==0) return false;vector<bool> dp(s.size() , false);int prt = 0;//匹配指针for(int i=0 ; i<t.size() ;i++){if(s[prt] == t[i])//匹配成功标记,匹配下一个{dp[prt] = true;prt++;}}return dp[s.size()-1];}
};

115. 不同的子序列

115. 不同的子序列 - 力扣(LeetCode)

代码描述

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例

示例 1:

输入:s = “rabbbit”, t = “rabbit”
输出:3
解释:
如下所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。
rabbbit
rabbbit
rabbbit

示例 2:

输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag

提示

1 <= s.length, t.length <= 1000
s 和 t 由英文字母组成

代码解析

动态规划
  • 确定dp数组(dp table)以及下标的含义
    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

  • 确定递推公式
    这一类问题,基本是要分析两种情况

    • s[i - 1] 与 t[j - 1]相等
      dp[i][j]可以有两部分组成。
      一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
      一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
      dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
    • s[i - 1] 与 t[j - 1] 不相等
      dp[i][j] = dp[i - 1][j];
  • dp数组如何初始化

    • dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
      那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

    • 再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
      那么dp[0][j]一定都是0,s如论如何也变成不了t。

    • 最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。
      dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
      在这里插入图片描述

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size()+1 , vector<uint64_t>(t.size()+1,0) );for(int i=1 ; i<s.size()+1 ;i++)dp[i][0] = 1;for(int j=1 ;j<t.size()+1 ;j++)dp[0][j] = 0;dp[0][0] = 1;for(int i=0 ; i<s.size() ;i++){for(int j=0 ;j<t.size();j++){if(s[i]==t[j]) dp[i+1][j+1] = dp[i][j] + dp[i][j+1];else dp[i+1][j+1] = dp[i][j+1];}}return dp[s.size()][t.size()];}
};

这篇关于算法学习——LeetCode力扣动态规划篇9(1035. 不相交的线、53. 最大子数组和、392. 判断子序列、115. 不同的子序列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/867522

相关文章

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python如何判断字符串中是否包含特殊字符并替换

《Python如何判断字符串中是否包含特殊字符并替换》这篇文章主要为大家详细介绍了如何使用Python实现判断字符串中是否包含特殊字符并使用空字符串替换掉,文中的示例代码讲解详细,感兴趣的小伙伴可以了... 目录python判断字符串中是否包含特殊字符方法一:使用正则表达式方法二:手动检查特定字符Pytho

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht