算法学习——LeetCode力扣动态规划篇3(494. 目标和、474. 一和零、518. 零钱兑换 II)

本文主要是介绍算法学习——LeetCode力扣动态规划篇3(494. 目标和、474. 一和零、518. 零钱兑换 II),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法学习——LeetCode力扣动态规划篇3

在这里插入图片描述

494. 目标和

494. 目标和 - 力扣(LeetCode)

描述

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示

1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000

代码解析

这道题根本还是回到了在数组中找到一个集合,使得该集合与其余部分之差为target,通过公式推导:
我们可以知道 该集合的值为:(sum-target)/2;

回溯法

目的是找到和为**(sum-target)/2** 的种类

class Solution {
public:int result = 0;void backtracking(vector<int>& nums, int target ,int deep ,int sum){if(sum > target)return;if(sum == target)result++;if(deep == nums.size()) return;//从任一点开始for(int i= deep ; i < nums.size() ;i++){backtracking(nums,target , i+1  , sum + nums[i]);}return;}int findTargetSumWays(vector<int>& nums, int target) {int sum = 0 , diff = 0;for(auto it:nums) sum += it;diff = sum - target;if( diff<0 || diff%2==1 ) return 0;//回溯找diff/2backtracking(nums,diff/2,0 ,0);return result;}
};
动态规划
  1. 背包定义: dp[i][j] , i是使用0-i的元素,j是背包容量,dp[i][j]是使用这么多个元素恰好凑成j的情况
  2. 初始化:dp[0][0]为1,装满容量为0的背包,有一种方法。dp[0][j],看第一个元素的大小情况,进行赋值1(如果第一个元素为0.则dp[0][0]应该为2),其他层的根据第一层改变.
  3. 遍历顺序:从上往下
  4. 递推公式: dp[i][j]=dp[i-1][j](不需要num[i]就能够凑出j的情况)+dp[i-1][j-nums[i]];(需要num[i]凑出j空间的情况) 最终就能实现,从0-i元素当中组合,得到target的所有情况。
class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0 , diff = 0;for(auto it:nums) sum += it;diff = sum - target;if( diff<0 || diff%2==1 ) return 0;vector<vector<int>>  dp( nums.size() , vector<int>(diff/2 + 1 , 0) ) ;dp[0][0] = 1;for(int j=0 ; j<(diff)/2+1 ; j++)if(j==nums[0]) dp[0][j] += 1;for(int i=1 ; i<nums.size() ;i++){for(int j=0 ; j<(diff)/2+1 ; j++){if(j>=nums[i])dp[i][j] = dp[i-1][j] + dp[i-1][ j - nums[i]] ;elsedp[i][j] = dp[i-1][j];}}      return dp[nums.size()-1][(diff)/2];}
};

474. 一和零

474. 一和零 - 力扣(LeetCode)

描述

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例

示例 1:

输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示

1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100

代码解析

动态规划(01背包,三级数组)

和经典的背包问题只有一种容量不同,这道题有两种容量,即选取的字符串子集中的 0 和 1 的数量上限。

经典的背包问题可以使用二维动态规划求解,两个维度分别是物品和容量。这道题有两种容量,因此需要使用三维动态规划求解,三个维度分别是字符串、0的容量和 1 的容量。

定义三维数组dp,其中dp[i][j][k] 表示在前 i 个字符串中,使用 j 个 0 和 k 个 1 的情况下最多可以得到的字符串数量。
当 0 和 1 的容量分别是 j 和 k 时,考虑以下两种情况:

  • 如果 j< zeros 或 k<ones,则不能选第 i 个字符串,此时有 dp[i][j][k] = dp[i−1][j][k];

  • 如果 j ≥ zeros 且 k ≥ones,则如果不选第 i个字符串,有dp[i][j][k]=dp[i−1][j][k],如果选第 i个字符串,有 dp[i][j][k]=dp[i−1][j−zeros][k−ones]+1,dp[i][j][k] 的值应取上面两项中的最大值。

因此状态转移方程如下:
在这里插入图片描述

class Solution {
public:int find_0(string s1){int num = 0;for(auto it:s1) if(it == '0') num++;return num;}int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<vector<int>>>  dp( strs.size() ,vector<vector<int>>( m+1 ,vector<int>( n+1,0) ));int num_0 = 0,num_1 = 0;num_0 = find_0(strs[0]);num_1 = strs[0].size() - num_0;for(int j=0 ; j<= m ;j++){for(int k=0 ; k<= n ;k++){if( j>= num_0 && k>= num_1)dp[0][j][k] = 1;}}for(int i=1 ; i<strs.size() ; i++){num_0 = find_0(strs[i]);num_1 = strs[i].size() - num_0;for(int j=0 ; j<=m ;j++){ for(int k=0 ; k<=n ;k++){if( j>= num_0 && k>= num_1)dp[i][j][k] = max( dp[i-1][j][k], dp[i-1][j - num_0][k - num_1] + 1);elsedp[i][j][k] = dp[i-1][j][k];}}}int max_num = 0;for(int i=0 ; i<strs.size() ; i++){if(dp[i][m][n] > max_num) max_num = dp[i][m][n];// cout<<dp[i][m][n]<<' ';}return max_num ;}
};
动态规划(滑动数组,二级数组)

由于dp[i][][] 的每个元素值的计算只和dp[i−1][][] 的元素值有关,因此可以使用滚动数组的方式,去掉 dp 的第一个维度,将空间复杂度优化到 O(mn)O(mn)。

实现时,内层循环需采用倒序遍历的方式,这种方式保证转移来的是 dp[i−1][][] 中的元素值。

class Solution {
public:int find_0(string s1){int num = 0;for(auto it:s1) if(it == '0') num++;return num;}int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>>  dp( m+1 ,vector<int>(n+1,0));int num_0 = 0,num_1 = 0;for(int i=0 ; i<strs.size() ; i++){num_0 = find_0(strs[i]);num_1 = strs[i].size() - num_0;for(int j=m ; j>=num_0;j--){ for(int k=n ; k>=num_1 ;k--){dp[j][k] = max( dp[j][k], dp[j - num_0][k - num_1] + 1);}}}return dp[m][n] ;}
};

518. 零钱兑换 II

518. 零钱兑换 II - 力扣(LeetCode)

描述

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10]
输出:1

提示

1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins 中的所有值 互不相同
0 <= amount <= 5000

代码解析

完全背包

一看到钱币数量不限,就知道这是一个完全背包。
dp[j]:凑成总金额j的货币组合数为dp[j]

dp[j] (考虑coins[i]的组合总和) 就是所有的dp[j - coins[i]](不考虑coins[i])相加。
所以递推公式:dp[j] += dp[j - coins[i]];

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。
从dp[i]的含义上来讲就是,凑成总金额0的货币组合数为1。

class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp( amount+1 , 0 );dp[0] = 1 ;for(int i=0 ; i < coins.size() ; i++){for(int j=0 ; j<=amount ; j++  ){if( j>=coins[i] )dp[j] +=  dp[j-coins[i]] ;elsedp[j] = dp[j];}}return dp[amount];}
};

这篇关于算法学习——LeetCode力扣动态规划篇3(494. 目标和、474. 一和零、518. 零钱兑换 II)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866953

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模