决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)

2024-04-01 06:38

本文主要是介绍决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Decision Tree 决策树:
决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 
下面来看个范例,就能很快理解了。

范例:
假设,我们有以下数据,表示当天是否回去玩高尔夫:

用决策树建立起来后,能得到这样的模型:

至此可以看出,说白了,决策树就是If()语句的层层嵌套,知道最后能总结出点什么。(原谅我实在不会描述点什么,不过看了这图应该对决策树有个大致的了解了吧。)

决策树中的元素:
决策树中的元素基本和树中的差不多。
最上面的一个称为根节点,如上图的Outlook,用数据中的属性作为根节点或是节点,如Humidity,Windy等。
分支使用的是节点属性中的离散型数据,如果数据是连续型的,也需要转化成离散型数据才能在决策树中展示,如上图将Outlook属性作为根节点,sunny,overcast,rain作为该节点的三个分支。

信息熵 Entropy:
现在,问题来了,在算法中如何确定使用数据的哪个属性作为根节点或是节点。当然不能随便选,我们追求的一直都是最优解,即使是局部最优。因此我们需要引入信息熵这个概念。
1948年,香农提出了“信息熵”概念。一条信息的信息量大小和它的不确定性有直接的关系。我们对一样东西越是一无所知,想要了解它就需要越多的信息。
举个栗子,如果我随机一个1-8之间的数字,给你猜,只回答你是或否。那最好的猜测方式应该是,“是不是在1-4之间?”,如果得到否,我们就知道在5-8之间,如果得到是,我们继续猜“是否在1-2之间?”。这样的话,我们只需要猜3次就能知道这个数到底是几。转化为信息熵公式就是:

根据这公式和例子,我们能得到结果是3,这是因为我们对1-8数字可能被选取的概率一无所知,如果比如说1-8选取概率并不是均匀分布的,我们就能更快的找到相应的数字,因此信息熵也会相应的变小。
总结下,如果一个变量的不确定越大,熵值也越大。

决策树归纳算法 ID3:
Information Gain:
又称信息获取量或是信息增益,将样本的所有属性分割开,分别计算,熵之和,信息增益就是二者的差值。

简单理解就是,没有属性A时候的信息量-有A时候的信息量。

举个栗子,假设我们有以下数据,买电脑的人与不买电脑的人:


可以看出,在此数据中,总数据量14个,买电脑的人9个,不买电脑的人5个,因此,Info(D)计算方式如下:

然后,我们想计算下age属性的信息量,<30的5人,<30并买电脑的2人,不买的3人,其余31-40,>40方法同理,因此计算方式如下:


因此Gain(age) = 0.940-0.694 = 0.246
再对比下其余属性Gain(Income)=0.029,Gain(Student)=0.151,Gain(Credit_rating)=0.048,因此可以看出,age属性信息量最大,因此选择age属性作为根节点。计算节点方法同理。

C4.5算法:
ID3算法存在一个问题,就是偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。ID3的后继算法C4.5使用增益率(gain ratio)的信息增益扩充,试图克服这个偏倚。
C4.5算法首先定义了“分裂信息”,其定义可以表示成:

其中各符号意义与ID3算法相同,然后,增益率被定义为:

C4.5选择具有最大增益率的属性,ID3选择最大信息获取量的属性,其余没啥差别,也就不赘述了

决策树其余算法:
决策树其余算法还有C4.5,CART算法,共同点为都是贪心算法,区别为度量方式不同,就比如ID3使用了信息获取量作为度量方式,而C4.5使用最大增益率。

如果属性用完了怎么办:
如果属性全部用完,但是数据还不是纯净集怎么办,即集合内的元素不属于同一类别。就比如上述买电脑的例子中,如果age,Credit_rating,Student,Income都相等,但是有人买电脑,有人不买电脑,那决策树怎么决策?在这种情况下,由于没有更多信息可以使用了,一般对这些子集进行“多数表决”,即使用此子集中出现次数最多的类别作为此节点类别,然后将此节点作为叶子节点。

剪枝:
作为决策树中一种放置Overfitting过拟合的手段,分为预剪枝和后剪枝两种。
预剪枝:当决策树在生成时当达到该指标时就停止生长,比如小于一定的信息获取量或是一定的深度,就停止生长。
后剪枝:当决策树生成完后,再进行剪枝操作。优点是克服了“视界局限”效应,但是计算量代价较大。

决策树优点:
直观,便于理解,在相对短的时间内能够对大型数据源做出可行且效果良好的结果,能够同时处理数据型和常规型属性。

决策树缺点:
可规模性一般,连续变量需要划分成离散变量,容易过拟合。
 

伪代码:

 

这篇关于决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866464

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、