决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)

2024-04-01 06:38

本文主要是介绍决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Decision Tree 决策树:
决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 
下面来看个范例,就能很快理解了。

范例:
假设,我们有以下数据,表示当天是否回去玩高尔夫:

用决策树建立起来后,能得到这样的模型:

至此可以看出,说白了,决策树就是If()语句的层层嵌套,知道最后能总结出点什么。(原谅我实在不会描述点什么,不过看了这图应该对决策树有个大致的了解了吧。)

决策树中的元素:
决策树中的元素基本和树中的差不多。
最上面的一个称为根节点,如上图的Outlook,用数据中的属性作为根节点或是节点,如Humidity,Windy等。
分支使用的是节点属性中的离散型数据,如果数据是连续型的,也需要转化成离散型数据才能在决策树中展示,如上图将Outlook属性作为根节点,sunny,overcast,rain作为该节点的三个分支。

信息熵 Entropy:
现在,问题来了,在算法中如何确定使用数据的哪个属性作为根节点或是节点。当然不能随便选,我们追求的一直都是最优解,即使是局部最优。因此我们需要引入信息熵这个概念。
1948年,香农提出了“信息熵”概念。一条信息的信息量大小和它的不确定性有直接的关系。我们对一样东西越是一无所知,想要了解它就需要越多的信息。
举个栗子,如果我随机一个1-8之间的数字,给你猜,只回答你是或否。那最好的猜测方式应该是,“是不是在1-4之间?”,如果得到否,我们就知道在5-8之间,如果得到是,我们继续猜“是否在1-2之间?”。这样的话,我们只需要猜3次就能知道这个数到底是几。转化为信息熵公式就是:

根据这公式和例子,我们能得到结果是3,这是因为我们对1-8数字可能被选取的概率一无所知,如果比如说1-8选取概率并不是均匀分布的,我们就能更快的找到相应的数字,因此信息熵也会相应的变小。
总结下,如果一个变量的不确定越大,熵值也越大。

决策树归纳算法 ID3:
Information Gain:
又称信息获取量或是信息增益,将样本的所有属性分割开,分别计算,熵之和,信息增益就是二者的差值。

简单理解就是,没有属性A时候的信息量-有A时候的信息量。

举个栗子,假设我们有以下数据,买电脑的人与不买电脑的人:


可以看出,在此数据中,总数据量14个,买电脑的人9个,不买电脑的人5个,因此,Info(D)计算方式如下:

然后,我们想计算下age属性的信息量,<30的5人,<30并买电脑的2人,不买的3人,其余31-40,>40方法同理,因此计算方式如下:


因此Gain(age) = 0.940-0.694 = 0.246
再对比下其余属性Gain(Income)=0.029,Gain(Student)=0.151,Gain(Credit_rating)=0.048,因此可以看出,age属性信息量最大,因此选择age属性作为根节点。计算节点方法同理。

C4.5算法:
ID3算法存在一个问题,就是偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。ID3的后继算法C4.5使用增益率(gain ratio)的信息增益扩充,试图克服这个偏倚。
C4.5算法首先定义了“分裂信息”,其定义可以表示成:

其中各符号意义与ID3算法相同,然后,增益率被定义为:

C4.5选择具有最大增益率的属性,ID3选择最大信息获取量的属性,其余没啥差别,也就不赘述了

决策树其余算法:
决策树其余算法还有C4.5,CART算法,共同点为都是贪心算法,区别为度量方式不同,就比如ID3使用了信息获取量作为度量方式,而C4.5使用最大增益率。

如果属性用完了怎么办:
如果属性全部用完,但是数据还不是纯净集怎么办,即集合内的元素不属于同一类别。就比如上述买电脑的例子中,如果age,Credit_rating,Student,Income都相等,但是有人买电脑,有人不买电脑,那决策树怎么决策?在这种情况下,由于没有更多信息可以使用了,一般对这些子集进行“多数表决”,即使用此子集中出现次数最多的类别作为此节点类别,然后将此节点作为叶子节点。

剪枝:
作为决策树中一种放置Overfitting过拟合的手段,分为预剪枝和后剪枝两种。
预剪枝:当决策树在生成时当达到该指标时就停止生长,比如小于一定的信息获取量或是一定的深度,就停止生长。
后剪枝:当决策树生成完后,再进行剪枝操作。优点是克服了“视界局限”效应,但是计算量代价较大。

决策树优点:
直观,便于理解,在相对短的时间内能够对大型数据源做出可行且效果良好的结果,能够同时处理数据型和常规型属性。

决策树缺点:
可规模性一般,连续变量需要划分成离散变量,容易过拟合。
 

伪代码:

 

这篇关于决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866464

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.