使用DTW算法对上证50成分股走势进行聚类分析

2024-03-31 18:48

本文主要是介绍使用DTW算法对上证50成分股走势进行聚类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.背景

客户要求对发电机组的过程参数进行分析,把走势异常的工艺过程数据挑出来。研究这个需求的时候感觉可能DTW算法比较合适。

关于DTW算法的描述前人描述很多。知乎中这位大神的收藏夹有很多关于时间序列算法的描述。

时间序列相似度以及聚类 - 收藏夹 - 知乎


 

想着搞点数据来试试才知道效果怎么样以及学会怎么用。然而甲方的数据倒腾起来太费劲。最好搞的数据是从富途上扒拉股票数据。于是决定把上证50成分股的走势搞个聚类看看,哪些成分股的走势是趋同的。

1. 准备工作

安装DTAIDistance的包。

pip install dtaidistance

注意要先有OpenMP。用法参考官方文档Welcome to DTAIDistance’s documentation! — DTAIDistance 2.2.1 documentation

准备从富途扒拉股票数据。参考官方文档富途开放接口

获取上证50列表。成分股数据 _ 数据中心 _ 东方财富网 上扒拉到excel里。

2.代码

基本就是调用datidistance包的现成函数。需要注意的是,包里的聚类算法输入的是由numpy.ndarray组成的list。list中每一行代表一个时间序列,时间序列的长度可以不等。

a=[np.array([0.,1,2,0,1,]),np.array([0.,1,3,1,2]),np.array([0.,0.5,1,2.5,3,0,2])]

 

就如同上面那样,整体的代码如下,东西都很简单看看注释和官方文档就行。

from futu import *
import  numpy as np
from dtaidistance import dtw, dtw_ndim, clustering, util_numpy
import dtaidistance.dtw_visualisation as dtwvis
from dtaidistance.exceptions import PyClusteringException
import matplotlib.pyplot as pltdef read_sh50():return pd.read_excel("./sh50.xlsx")
def read_k():df_sh50 = read_sh50()quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111)start_date = "2020-9-1"#K线开始时间end_date = "2021-9-1"#K线结束时间s=[]for i in range(df_sh50.shape[0]):ret, data, page_req_key = quote_ctx.request_history_kline(df_sh50.at[i, 'futucode'], start=start_date,end=end_date, max_count=1000)#获取上证50每一个股票的K线数据if ret == RET_OK:if i == 0:ntmp=np.array(data['close'].values.tolist())#将收盘价转换为numpy arrayntmp=(ntmp-np.min(ntmp))/(np.max(ntmp)-np.min(ntmp))#归一化s = [ntmp]else:ntmp = np.array(data['close'].values.tolist())ntmp = (ntmp - np.min(ntmp)) / (np.max(ntmp) - np.min(ntmp))s.append(ntmp)quote_ctx.close()  # 结束后记得关闭当条连接,防止连接条数用尽model1 = clustering.LinkageTree(dtw.distance_matrix_fast, {})#指定聚类所用的方法为linkagetree,计算两条曲线相似度的函数用dtw.distance_matrix_fastcluster_idx = model1.fit(s)#进行聚类计算plt.rcParams['font.family'] = ['sans-serif']#中文支持plt.rcParams['font.sans-serif'] = ['SimHei']fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(100, 100))#整个大点的图好放得下show_ts_label = lambda idx: df_sh50.at[idx,'股票名称']#指定每条曲线的标签model1.plot("hierarchy.png", axes=ax, show_ts_label=show_ts_label,show_tr_label=True, ts_label_margin=-10,ts_left_margin=10, ts_sample_length=1)

3. 结果

不出意外一坨银行股挤在了一起。然而民生银行还真是奇葩,跟其他银行股不一样。药茅、光茅和航发、韦尔股份的走势高度一致,也就是版块不重要,靠梦想的股票和靠现金流的股票都是各玩各的。

 

这篇关于使用DTW算法对上证50成分股走势进行聚类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865053

相关文章

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型