使用Python实现ID3决策树中特征选择的先后顺序,字节跳动面试真题

本文主要是介绍使用Python实现ID3决策树中特征选择的先后顺序,字节跳动面试真题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

def empty1(pri_data):

hair = [] #[‘长’, ‘短’, ‘短’, ‘长’, ‘短’, ‘短’, ‘长’, ‘长’]

voice = [] #[‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’]

sex = [] #[‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’]

for one in pri_data:

hair.append(one[0])

voice.append(one[1])

sex.append(one[2])

cu_voive = voice.count(‘粗’) #6

thin_voice = voice.count(‘细’) #2

一维列表合并成多维列表

d = []

for i in range(len(hair)):

for j in range(len(voice)):

if i == j:

for k in range(len(sex)):

if j == k:

t = [hair[i], voice[j], sex[k]]

d.append(t)

print(d)

a = d.count([‘短’, ‘粗’, ‘男’]) #2

b = d.count([‘短’, ‘粗’, ‘女’]) #1

c = d.count([‘长’, ‘粗’, ‘男’]) #1

e = d.count([‘长’, ‘粗’, ‘女’]) #2

f = d.count([‘长’, ‘细’, ‘女’]) #1

g = d.count([‘短’, ‘细’, ‘女’]) #1

#一维列表合并成二维列表

z=list(zip(voice,sex))

cu_woman =z.count((‘粗’,‘女’))

cu_man = z.count((‘粗’,‘男’))

num_v_h = (cu_woman + cu_man)

return cu_voive, thin_voice, cu_woman, cu_man, num_v_h

def empty2(pri_data):

hair = [] # [‘长’, ‘短’, ‘短’, ‘长’, ‘短’, ‘短’, ‘长’, ‘长’]

voice = [] # [‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’]

sex = [] # [‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’]

for one in pri_data:

hair.append(one[0])

voice.append(one[1])

sex.append(one[2])

一维列表合并成二维列表

k = list(zip(hair, sex))

long_man =k.count((‘长’,‘男’))

long_woman = k.count((‘长’,‘女’))

sum_hair1 = long_man + long_woman

short_man = k.count((‘短’,‘男’))

short_woman = k.count((‘短’,‘女’))

sum_hair2 = short_man + short_woman

sum_Hair = sum_hair1 + sum_hair2

return long_man, long_woman, sum_hair1,sum_hair2,sum_Hair,short_man,short_woman

用声音作为优先选择特征求信息增益

def xxx1(cu_voice,thin_voice,cu_woman,cu_man,num_v_h):

voice_num=cu_voice+thin_voice

A = -cu_voive/voice_num * (cu_woman/num_v_h) * np.log2(cu_woman/num_v_h) - \

cu_voive/voice_num * (cu_man/num_v_h) * np.log2(cu_man/num_v_h)

sum_v = getData(pri_data) - A

return sum_v

用头发作为优先选择特征求信息增益

def xxx2(long_man, long_woman, sum_hair,sum_hair2,sum_Hair,short_man,short_woman):

B = -sum_hair/sum_Hair* (long_man/sum_hair) * np.log2(long_man/sum_hair) - \

sum_hair/sum_Hair * (long_woman/sum_hair) * np.log2(long_woman/sum_hair) - sum_hair2/sum_Hair * (short_man/sum_hair2) * np.log2(short_man/sum_hair2)\

  • sum_hair2/sum_Hair* (short_woman/sum_hair2) * np.log2(short_woman/sum_hair2)

sum_h = getData(pri_data) - B

return sum_h

if name == “main”:

pri_data = [[‘长’, ‘粗’, ‘男’], [‘短’, ‘粗’, ‘男’], [‘短’, ‘粗’, ‘男’],

[‘长’, ‘细’, ‘女’], [‘短’, ‘细’, ‘女’], [‘短’, ‘粗’, ‘女’],

[‘长’, ‘粗’, ‘女’], [‘长’, ‘粗’, ‘女’]]

total_shang=getData(pri_data)

cu_voive, thin_voice, cu_woman, cu_man, num_v_h=empty1(pri_data)

sum1 = xxx1(cu_voive, thin_voice, cu_woman, cu_man, num_v_h)

print(‘用声音作为优先选择特征求信息增益:’,sum1)

long_man, long_woman, sum_hair1, sum_hair2, sum_Hair, short_man, short_woman=empty2(pri_data)

sum2 = xxx2(long_man, long_woman, sum_hair1, sum_hair2, sum_Hair, short_man, short_woman)

print(‘用头发作为优先选择特征求信息增益:’,sum2)

if sum1 > sum2:

print(“用声音作为优先选择特征求信息增益大”)

else:

print(“用头发作为优先选择特征求信息增益大”)

截图:

在这里插入图片描述

四、实验内容

(1)案例描述:通过天气、温度、湿度、是否有风4个特征来决策是否打球。使用Python实现求出其信息增益,并得出哪个特征优先被选择(注:数据处理使用程序计算,数据见data.xls)。

数据集如下:在这里插入图片描述

代码:

import xlrd

import numpy as np

workbook=xlrd.open_workbook(“data.xls”)

sheet=workbook.sheet_by_name(“Sheet1”)

row_count=sheet.nrows

col_count=sheet.ncols

data_list=[]

for i in range(1,row_count):

data_list.append(sheet.row_values(i))

play_golf_number=0

no_play_golf_number=0

total_count=0

for i in data_list:

if i[col_count-1]==“Yes”:

play_golf_number+=1

else:

no_play_golf_number+=1

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

c8abf2f2f4b1af.png)

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

这篇关于使用Python实现ID3决策树中特征选择的先后顺序,字节跳动面试真题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/863729

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do