Quiet-STaR:让语言模型在“说话”前思考

2024-03-31 06:04

本文主要是介绍Quiet-STaR:让语言模型在“说话”前思考,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大型语言模型(llm)已经变得越来越复杂,能够根据各种提示和问题生成人类质量的文本。但是他们的推理能力让仍然是个问题,与人类不同LLM经常在推理中涉及的隐含步骤中挣扎,这回导致输出可能在事实上不正确或缺乏逻辑。

考虑以下场景:正在阅读一个复杂的数学证明。虽然最终的答案可能很清楚,但关键在于理解初始条件和结论之间未说明的步骤。在交谈中也一样,我们依靠中间的假设和背景知识来理解所说的话。这种内隐的推理的能力是Quiet-STaR为LLM提供的能力。

自学推理器(STaR)

先前的研究已经发明了STaR:一种LLM通过从问答示例中推断基本原理来学习推理的技术。但是STaR仅限于特定的任务,并且需要访问预先存在的答案-基本原理对。而Quiet-STaR建立在STaR的基础上,使LLM能够为他们生成的任何文本生成基本原理,使推理过程更加通用和适用。

挑战与解决方案

实现Quiet-STaR有几个挑战。为每个单词生成基本原理在计算上是非常昂贵的。并且LLM本身就缺乏产生或利用这些内在思想的能力。最后Quiet-STaR不仅需要预测下一个单词,还需要考虑文本中更长期的依赖关系。

Quiet-STaR背后的研究人员通过一系列创新技术来解决这些挑战:

令牌并行抽样:采用了一种独特的抽样算法,其中LLM在文本旁边生成基本原理,一次一个令牌(单词)。

可学习的思想令牌:在生成的文本中引入了特殊的符号令牌来表示基本原理的开始和结束。随着时间的推移,LLM学会有效地使用这些令牌。

加强教师指导:使用了一种改进的教师指导技术来指导LLM确保正确的输出文本和相应的基本原理。

Quiet-STaR的流程如下:

Quiet-STaR的好处

1、Quiet-STaR有助于LLM在句子中预测具有挑战性的单词。这些理由提供了额外的上下文,使LLM能够做出更加明智的预测。

2、使用Quiet-STaR训练的LLM在直接回答困难问题方面表现出显著改进。理由引发的推理过程使LLM更有效地处理复杂问题。

3、Quiet-STaR导致推理基准(GSM8K和CommonsenseQA)上的性能提升,而无需在这些特定任务上进行任何微调。这表明LLM将其推理能力推广到未见问题,提升了零样本性能

4、Quiet-STaR明显降低了困惑度,这是一个指示预测序列中下一个单词难度的度量。这表明理由使得LLM的整体文本生成过程更加顺畅和高效。

总结

Quiet-STaR代表了LLM发展的重大进步。通过使它们能够生成理由并经过与文本生成相关的步骤进行推理,Quiet-STaR为更可靠、准确并且能够处理复杂任务的LLM铺平了道路。

目前的研究侧重于文本理由。未来的工作可以探索将其他形式的理由纳入其中,例如视觉或符号表示。将理由生成与可解释AI技术结合可以使LLM不仅能够生成理由,还能够向用户解释其推理过程,增进信任和透明度。Quiet-STaR可以通过将领域特定的知识源纳入到理由生成过程中来进一步针对特定任务进行定制。

论文地址:Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking

https://avoid.overfit.cn/post/1ea458c86cf14b45ac219e7d7e82cdc4

这篇关于Quiet-STaR:让语言模型在“说话”前思考的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/863589

相关文章

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常