Golang线上内存爆掉问题排查(pprof)

2024-03-30 16:04

本文主要是介绍Golang线上内存爆掉问题排查(pprof),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Golang线上内存爆掉问题排查(pprof)

1 问题描述

某天,售后同事反馈,我们服务宕掉了,客户无法预览我们的图片了。

  • 我们预览图片是读取存储在我们S3服务的数据,然后返回给前端页面展示。
  • 因为客户存在几百M的图片,所以一旦请求并发一上来,很容易就把内存打爆。

2 pprof分析

声明: 涉及到数据敏感,以下代码是我模拟线上故障的一个情况。

好在我们程序都有添加pprof监控,于是直接通过go tool pprof分析:

①获取堆内存分配情况:go tool pprof http://xx/debug/pprof/heap

# localhost直接改成自己程序的IP:端口
go tool pprof http://localhost:80/debug/pprof/heap

在这里插入图片描述

②过滤出占用堆内存前10的方法:top 10

# 过滤占用堆内存排名前10方法
top 10

在这里插入图片描述

参数解析:

  • flat:表示此函数分配、并由该函数持有的内存空间。
  • cum:表示由这个函数或它调用堆栈下面的函数分配的内存总量。

③查看方法详情:list testReadAll

可以看到我们自己程序的方法是main包下面的testAll方法占用了875MB多内存。

# 查看方法详情
list testReadAll

在这里插入图片描述

最后定位到ioutil.ReadAll这个方法占用了太多内存。

  • 熟悉的朋友都清楚,ioutil.ReadAll是直接将文件或者流数据一次性读取到内存里。如果文件过大或者多个请求同事读取多个文件,会直接将服务器内存打爆。

因为我们的客户有几百M的图片,所以一旦并发以上来很可能打爆。因此这里需要改成流式的io.Copy

3 解决:改用流式io.Copy()

定位到问题后,直接改用流式方式给前端返回。

_, err = io.Copy(ctx.ResponseWriter(), file)

🚀:由于这次新人的失误,加上测试数据量不够大,导致出现线上问题,所以大家以后还是要多review代码+增加压力测试。

4 本地测试io.Copy与ioutil.ReadAll

  1. 编写demo代码
package mainimport ("github.com/kataras/iris/v12""github.com/kataras/iris/v12/context""io""io/ioutil""net/http"_ "net/http/pprof""os"
)func main() {app := iris.New()go func() {http.ListenAndServe(":80", nil)}()//readAllapp.Get("/readAll", testReadAll)//io.Copyapp.Get("/ioCopy", func(ctx *context.Context) {file, err := os.Open("/Users/ziyi2/GolandProjects/MyTest/demo_home/io_copy_demo/xx.zip")if err != nil {panic(err)}defer file.Close()_, err = io.Copy(ctx.ResponseWriter(), file)if err != nil {panic(err)}})app.Listen(":8080", nil)
}func testReadAll(ctx *context.Context) {file, err := os.Open("/Users/ziyi2/GolandProjects/MyTest/demo_home/io_copy_demo/xx.zip")if err != nil {panic(err)}defer file.Close()//simulate onLine errbytes, err := ioutil.ReadAll(file)if err != nil {panic(err)}_, err = ctx.Write(bytes)if err != nil {panic(err)}
}
  1. 打开资源监视器,同时发起readAll请求,观察内存占用
  • 发起readAll请求前
    在这里插入图片描述
  • 发送readAll请求
localhost:8080/readAll

我本地是模拟读取差不多1G左右的文件,可以看到ioutil.ReadAll直接一次性将内容读取到了内存。(一旦并发量上来,或者图片文件超大,后果不敢想象)
在这里插入图片描述
3. 再观察io.Copy方法

  • 发送ioCopy请求
localhost:8080/ioCopy
  • 流式传输,最后程序内存并没有暴涨
    在这里插入图片描述
    在这里插入图片描述

结论:

ioutil.ReadAll:会将数据一次性加载到内存。
io.Copy:流式拷贝,不会导致内存暴涨
因此对于大文件或者数据量不确定的场景推荐使用io.Copy

拓展:pprof使用

① 引入pprof

  1. 引入pprof包
  2. 开启一个协程监听
package mainimport ("github.com/kataras/iris/v12""github.com/kataras/iris/v12/context""net/http"_ "net/http/pprof""os"
)func main() {app := iris.New()go func() {http.ListenAndServe(":80", nil)}()app.Listen(":8080", nil)
}

②查看分析报告

1 浏览器直接访问
http://IP:Port/debug/pprof

在这里插入图片描述

2 go tool 命令行直接分析
# 查看堆内存信息
go tool pprof http://IP:Port/debug/pprof/heap# 查看cpu信息
go tool pprof http://IP:Port/debug/pprof/profile## -seconds=5设置采样时间为5s
# go tool pprof -seconds=5 http://IP:Port/debug/pprof/profile# 查看协程信息
go tool pprof http://IP:Port/debug/pprof/goroutine# 查看代码阻塞信息
go tool pprof http://IP:Port/debug/pprof/block# 需要查看什么信息将URL默认的Type更换为对应类型即可

-seconds=30 设置采样30s,也可以自定义时间范围。需要注意的是,对于profile而言,总是需要采样一段时间,才可以看到数据。而其他历史累计的数据,则可以直接获取从程序开始运行到现在累积的数据,也可以设置-seconds来获取一段时间内的累计数据。而其他实时变化的指标,设置这个参数没什么用,只会让你多等一会。

  1. allocs: A sampling of all past memory allocations【所有内存分配,历史累计】
  2. block: Stack traces that led to blocking on synchronization primitives【导致阻塞同步的堆栈,历史累计】
  3. cmdline: The command line invocation of the current program【当前程序命令行的完整调用路径】
  4. goroutine: Stack traces of all current goroutines. Use debug=2 as a query parameter to export in the same format as an unrecovered panic.【当前所有运行的goroutine堆栈信息,实时变化】
  5. heap: A sampling of memory allocations of live objects. You can specify the gc GET parameter to run GC before taking the heap sample.【查看活动对象的内存分配情况,实时变化】
  6. mutex: Stack traces of holders of contended mutexes【导致互斥锁竞争持有者的堆栈跟踪,历史累计】
  7. profile: CPU profile. You can specify the duration in the seconds GET parameter. After you get the profile file, use the go tool pprof command to investigate the profile.【默认进行30s的CPU Profing,用于观察CPU使用情况】
  8. threadcreate: Stack traces that led to the creation of new OS threads【查看创建新OS线程的堆栈跟踪信息】
  9. trace: A trace of execution of the current program. You can specify the duration in the seconds GET parameter. After you get the trace file, use the go tool trace command to investigate the trace.【当前程序执行链路】

注意:默认情况下是不追踪block和mutex的信息的,如果想要看这两个信息,需要在代码中加上两行:

runtime.SetBlockProfileRate(1) // 开启对阻塞操作的跟踪,block  
runtime.SetMutexProfileFraction(1) // 开启对锁调用的跟踪,mutex
3 导出为.out文件+命令行分析(推荐)

推荐使用导出文件方式,虽然步骤繁琐,但是有文件落地,保证重要数据不会丢失

//导出为文件
curl -o heap.out http://IP:Port/debug/pprof/heap//解析文件并进入命令行交互
go tool pprof heap.out
//后续操作就和命令行直接分析如出一辙//top 10 
//list funcName

在这里插入图片描述

③参数解析

1 采样类型
allocs:所有内存分配,历史累计

allocs: A sampling of all past memory allocations【所有内存分配,历史累计】

block:导致阻塞同步的堆栈信息,历史累计(每发生一次阻塞取样一次)

block: Stack traces that led to blocking on synchronization primitives【导致阻塞同步的堆栈,历史累计】

  • Block Goroutine阻塞事件的记录 默认每发生一次阻塞事件时取样一次
cmdline:程序命令行的完整调用路径

cmdline: The command line invocation of the current program【当前程序命令行的完整调用路径】

goroutine:当前程序运行的所有goroutine,实时变化(获取时取样一次)

goroutine: Stack traces of all current goroutines. Use debug=2 as a query parameter to export in the same format as an unrecovered panic.【当前所有运行的goroutine堆栈信息,实时变化】

  • 活跃Goroutine信息的记录 仅在获取时取样一次
heap:查看堆内存分配情况,实时变化(每分配512K取样一次)

heap: A sampling of memory allocations of live objects. You can specify the gc GET parameter to run GC before taking the heap sample.【查看活动对象的内存分配情况,实时变化】

  • Heap 堆内存分配情况的记录 默认每分配512K字节时取样一次
mutex:导致互斥锁竞争的堆栈跟踪,历史累计

mutex: Stack traces of holders of contended mutexes【导致互斥锁竞争持有者的堆栈跟踪,历史累计】

profile:CPU使用情况

profile: CPU profile. You can specify the duration in the seconds GET parameter. After you get the profile file, use the go tool pprof command to investigate the profile.【默认进行30s的CPU Profing,用于观察CPU使用情况】

threadcreate:创建新线程的堆栈信息(获取时取样)

threadcreate: Stack traces that led to the creation of new OS threads【查看创建新OS线程的堆栈跟踪信息】

  • 系统线程创建情况的记录 仅在获取时取样一次
trace:程序整个执行链路

trace: A trace of execution of the current program. You can specify the duration in the seconds GET parameter. After you get the trace file, use the go tool trace command to investigate the trace.【当前程序执行链路】

注意:默认情况下是不追踪block和mutex的信息的,如果想要看这两个信息,需要在代码中加上两行:

runtime.SetBlockProfileRate(1) // 开启对阻塞操作的跟踪,block  
runtime.SetMutexProfileFraction(1) // 开启对锁调用的跟踪,mutex
2 统计维度(以内存取样为例)

如果是初次接触pprof,可能会疑惑flat、sum、cum代表什么意思

在这里插入图片描述
官网解析:

  • The first two columns show the number of samples in which the function was running (as opposed to waiting for a called function to return), as a raw count and as a percentage of total samples.

  • The third column shows the running total during the listing.

  • The fourth and fifth columns show the number of samples in which the function appeared (either running or waiting for a called function to return). To sort by the fourth and fifth columns, use the -cum (for cumulative) flag.

  • 官网地址:https://go.dev/blog/pprof

以获取内存为例:

flat:当前函数分配的内存,不包含它调用其他函数造成的内存分配
flat%:当前函数分配内存占比
sum%:自己和前面所有的flat%累积值
cum:当前函数及当前函数调用其他函数的分配内存的汇总
cum%:这个函数分配的内存,以及它调用其他函数分配的内存之和

这篇关于Golang线上内存爆掉问题排查(pprof)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861933

相关文章

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地