C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用

2024-03-30 12:52

本文主要是介绍C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、开散列的概念

1.1开散列与闭散列比较

二、开散列/哈希桶的实现

2.1开散列实现

哈希函数的模板构造

哈希表节点构造

开散列增容

插入数据

2.2代码实现


一、开散列的概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

fe028ef67fc447009dc9a8cfeb08e470.png

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

1.1开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。

二、开散列/哈希桶的实现

2.1开散列实现

哈希函数的模板构造

当数据类型不是整数时,我们需要通过哈希函数将其转换为一个size_t类型的无符号整形然后%上哈希表的容量得出一个映射值,所以需要针对不同的数据类型,来构造不同的Hashfunc来将其转换为size_t类型,这时就要用到模板特化来处理数据,尤其是字符串类型。

哈希表节点构造

同时针对set和map的不同,我们需要将hash桶的模板可以满足两种不同类型的调用,所以在参数上也要设置两个参数,如果是set传参,就让两个参数都是K,如果是map传参,第一个参数是K,第二个参数则是pair<K,V>,而在构造哈希表的node时,不管是set还是map都只需要传第二个参数过去,而hashnode也只需要用一个template<class T>来进行接收就好,然后构造初始化出T _data和一个T* _next的指针来指向桶中下一个节点。

那为什么在传参时不直接只设置一个参数呢?因为在调用find时,需要传一个值进去查找,如果是set则直接查找,如果是map则需要取出hashnode中的first与之进行比较,所以必须设置两个模板参数。

开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

插入数据

因为开散列每个位置都是一串单链表,所以在插入节点时,直接选择头插即可,头插的消耗和速度都是最小的。

2.2代码实现

#pragma once
#include<iostream>
using namespace std;
#include<vector>
#include<string>template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};// 特化
template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto e : s){hash += e;hash *= 131;}return hash;}
};
namespace hash_bucket
{//如果是unordered_set的话T=K//如果是unordered_map的话T=pair<K,V>template<class T>struct HashNode{HashNode<T>* _next;T _data;HashNode(const T& data):_next(nullptr),_data(data){}};// 前置声明,因为编译器编译时会向上进行查找,而iterator要去调用哈希表,所以需要提前进行前置声明template<class K, class T, class Keyoft, class Hash >class HashTable;//迭代器实现template<class K, class T, class Keyoft, class Hash >struct __HTIterator{typedef HashNode<T> Node;typedef HashTable<K, T, Keyoft, Hash> HT;typedef __HTIterator<K, T, Keyoft, Hash> Self;Node* _node;HT* _ht;__HTIterator(Node* node,HT* ht):_node(node),_ht(ht){}T& operator*(){return _node->_data;}Self& operator++(){//如果当前桶内还有节点if (_node->_next){_node = _node->_next;}else{//当前桶找完,就去找下一个桶Keyoft kot;Hash hs;size_t hashi = hs(kot(_node->_data)) % _ht->_tables.size();hashi++;while (hashi < _ht->_tables.size()){if (_ht->_tables[hashi]){_node = _ht->_tables[hashi];break;}hashi++;}//如果后面没有桶if (hashi == _ht->_tables.size()){_node = nullptr;}}return *this;}bool operator!=(const Self& s){return _node != s._node;}};//哈希桶搭建template<class K, class T,class Keyoft,class Hash>class HashTable{template<class K, class T, class KeyOfT, class Hash>friend struct __HTIterator;typedef HashNode<T> Node;public:typedef __HTIterator< K, T, Keyoft, Hash> iterator;HashTable(){_tables.resize(10, nullptr);_n = 0;}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}iterator begin(){for (size_t i = 0; i < _tables.size(); i++){// 找到第一个桶的第一个节点if (_tables[i]){return iterator(_tables[i], this);}}return end();}iterator end(){return iterator(nullptr, this);}//插入节点bool insert(const T& data){Keyoft kot;if (Find(kot(data)))return false;Hash hs;//负载因子到1就扩容if (_n == _tables.size()){vector<Node*> newtables(_tables.size() * 2,nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//头插到新表size_t hashi = hs(kot(cur->_data)) % newtables.size();newtables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newtables);}size_t hashi = hs(kot(data)) % _tables.size();Node* newnode = new Node(data);//头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}//查找Node* Find(const K& key){Hash hs;Keyoft kot;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key)return cur;cur = cur->_next;}return nullptr;}Node* Erase(const K& key){Hash hs;Keyoft kot;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->next;}else{prev->_next = cur->_next;}}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables;//指针数组size_t _n;};
}

这篇关于C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861536

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根