P1082 同余方程 扩展欧几里德算法 C++

2024-03-30 12:48

本文主要是介绍P1082 同余方程 扩展欧几里德算法 C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

求关于x xx的同余方程 ax≡1(modb) a x \equiv 1 \pmod {b}ax≡1(modb) 的最小正整数解。
输入格式

一行,包含两个正整数 a,b,用一个空格隔开。
输出格式

一个正整数 x0,即最小正整数解。输入数据保证一定有解。
输入输出样例
输入 #1

3 10

输出 #1

7

说明/提示

【数据范围】

对于 40%的数据,2≤b≤1,0002 ≤b≤ 1,0002≤b≤1,000;

对于 60%的数据,2≤b≤50,000,0002 ≤b≤ 50,000,0002≤b≤50,000,000;

对于 100%的数据,2≤a,b≤2,000,000,0002 ≤a, b≤ 2,000,000,0002≤a,b≤2,000,000,000。

NOIP 2012 提高组 第二天 第一题

思路

说白了是一组 a,b。目标是求出满足 ax+by=gcd(a,b)(称式子α)
我们得知道公式,①gcd(a,b)=ax+by 和 普通欧几里得公式②gcd(a,b)=gcd(b,a mod b)。
题目给我们了a和b让我们求x。y是一个辅助元
先把②带入①得 gcd(b,a mod b)=ax+by 即 ax+by=gcd(a,a mod b)
为了求x和y,我们又设x2和y2,那么根据①式必满足 ④bx2+(a mod b)y2=gcd(b,a mod b)

又有①知gcd(a,b)=gcd(b,a mod b),带入④ 得⑤bx2+(a mod b)y2=gcd(a,b)跟α相比较
--------------------------------------------------------------ax + by =gcd(a,b) 不难看出系数之间的变化,
有是一个新的子问题,求满足⑤x的最小解

引入一个新的式子⑥ a mod b =a-b*(a/b) //在c++里整数的除"/"会向下取整 如3/2=1

将⑥带入⑤:
bx2+(a-b*(a/b))y2=gcd(a,b) 因为由①知 gcd(a,b)=ax+by
代入
bx2+(a-b*(a/b))y2=ax+by 说以你现在知道为什么要设x2和y2
化简
bx2+ay2-b*(a/b)*y2=ax+by

移项
bx2-b*(a/b)*y2+ay2=ax+by

ay2+b(x2-y2*(a/b))=ax+by
现在已经非常明显了!!!
系数都相同为a和b,明显得出
x=y2 y=x2-y2*(a/b)

a和b已经知道
我们只要知道x2和y2就能求出x和y
那如何知道x2和y2?

同求x和y的方法一样,设x3和y3,又x2=y3 y2=x2+y3*(a/b)
求x3和y3???
方法同上

这样递归的框架渐渐出现,只需要知道一个出口条件就能写出代码了
我们只需要一组 xn,yn满足 an 乘 xn+bn 乘 yn=gcd(an,bn)
如果b减得为零了 那就无法再往下展开 x也就等于=1 y=0
这一步还是看代码理解吧

#include<bits/stdc++.h>
using namespace std;
long long x,y;
void gcd(long long a,long long b){if(b==0){//无法拓展x=1;//唯一能满足条件的也只有1y=0;return ;}gcd(b,a%b);//自己看上面的公式long long tx=x;//拷贝一下x=y;//自己看上面的公式y=tx-a/b*y;
}
int main(){long long a,b;cin>>a>>b;gcd(a,b);while(x<0){//当x为负数时x+=b;//x可能在减的时候为负数,依次+b最后mod 一定是最小的}x%=b;cout<<x;return 0;
}

这篇关于P1082 同余方程 扩展欧几里德算法 C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861526

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基