量化数据预处理:去极值、标准化、中性化

2024-03-30 09:58

本文主要是介绍量化数据预处理:去极值、标准化、中性化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于量化研究而言,拿到一份基础数据,首先需要对数据做预处理,以便于更好的探究数据规律,基于不同目标有不同处理环节,其中去极值、标准化、中性化这三点经常被放在一起讨论。整理网络资料,理解如下。

  • 去极值

    数据(单个因子的时间序列数据)中存在异常值,可能会导致拉大标准差、拉偏统计规律…

    常规处理理念就是确定此数据指标(比如某个因子)的上下限阈值,然后超过(或低于)此限度的数据均设置为阈值,以提高数据结论的准确性。

    上下限的判定方法有三种:MAD、 3 σ 3\sigma 3σ法、百分位法。

    • MAD(Median Absolute Deviation, 绝对值差中位数法)

      MAD,先计算所有因子与平均值之间的距离总和来检测离群值。

      • 计算所有因子的中位数 X m e d i a n X_{median} Xmedian
      • 计算每个因子与中位数的绝对偏差值 X i − X m e d i a n X_i-X_{median} XiXmedian
      • 计算绝对偏差值的中位数 M A D MAD MAD
      • 确定参数 n n n,从而确定合理的范围为 [ X m e d i a n − n ∗ M A D , X m e d i a n + n ∗ M A D ] [X_{median}-n*MAD,X_{median}+n*MAD] [XmediannMAD,Xmedian+nMAD],针对超出合理范围的值做如下调整:

        X i ′ = { X m e d i a n + n ∗ M A D &ThickSpace;&ThickSpace;&ThickSpace; i f &ThickSpace; X i &gt; X m e d i a n + n ∗ M A D X m e d i a n − n ∗ M A D &ThickSpace;&ThickSpace;&ThickSpace; i f &ThickSpace; X i &lt; X m e d i a n − n ∗ M A D X i &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; i f &ThickSpace; X m e d i a n − n ∗ M A D &lt; X i &lt; X m e d i a n + n ∗ M A D X_i&#x27;=\begin{cases}X_{median}+n*MAD\;\;\;if \;X_i&gt;X_{median}+n*MAD\\X_{median}-n*MAD\;\;\;if\;X_i&lt;X_{median}-n*MAD \\ X_i\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;if \;X_{median}-n*MAD&lt;X_i&lt;X_{median}+n*MAD \end{cases} Xi=Xmedian+nMADifXi>Xmedian+nMADXmediannMADifXi<XmediannMADXiifXmediannMAD<Xi<Xmedian+nMAD

      # 代码实现
      def mad(series,n):median = series.quantile(0.5)diff_median = ((series - median).abs()).quantile(0.5)max_range = median + n * diff_medianmin_range = median - n * diff_medianreturn np.clip(series, min_range, max_range)
    • 3 σ 3\sigma 3σ

      3 σ 3\sigma 3σ法又称为标准差法。

      标准差本身可以体现因子的离散程度,是基于因子的平均值 X m e a n X_{mean} Xmean而定的。可以通过 X m e a n ± n ∗ σ X_{mean}\pm n*\sigma Xmean±nσ来衡量因子与平均值的距离。

      • 计算出因子的平均值与标准差;

      • 确认参数 n n n;

      • 确认因子值的合理范围为 [ X m e a n − n ∗ σ , X m e a n + n ∗ σ ] [X_{mean}-n*\sigma,X_{mean}+n*\sigma] [Xmeannσ,Xmean+nσ],并对因子值做如下的调整:
        X i ′ = { X m e a n + n ∗ σ &ThickSpace;&ThickSpace;&ThickSpace; i f &ThickSpace; X i &gt; X m e a n + n ∗ σ X m e a n − n ∗ σ &ThickSpace;&ThickSpace;&ThickSpace; i f &ThickSpace; X i &lt; X m e a n − n ∗ σ X i &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; i f &ThickSpace; X m e a n − n ∗ σ &lt; X i &lt; X m e a n + n ∗ σ X_i&#x27;=\begin{cases}X_{mean}+n*\sigma\;\;\;if \;X_i&gt;X_{mean}+n*\sigma\\X_{mean}-n*\sigma\;\;\;if\;X_i&lt;X_{mean}-n*\sigma \\ X_i\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;if \;X_{mean}-n*\sigma&lt;X_i&lt;X_{mean}+n*\sigma \end{cases} Xi=Xmean+nσifXi>Xmean+nσXmeannσifXi<XmeannσXiifXmeannσ<Xi<Xmean+nσ

      # 代码实现
      def three_sigma(series,n):mean = series.mean()std = series.std()max_range = mean + n * stdmin_range = mean - n * stdreturn np.clip(series, min_range, max_range)
      
    • 百分位法

      将因子值进行升序排列,对排位百分位高于97.5%或低于2.5%的因子值,进行类似于MAD、 3 σ 3\sigma 3σ的操作。

      # 代码实现
      def percentile(series, min= 0.025, max= 0.975):series = series.sort_values()q = series.quantile([min, max])return np.clip(series, q.iloc[0], q.iloc[-1])
      
  • 标准化

    对于多因子策略,不同因子的量纲和数量级不同,为实现不同指标的可加性,需要对原始指标数据进行标准化处理。

    数据标准化方法分类:

    数据标准化处理主要包括:

    数据标准化原理是将数据按比例缩放,使所有数据落入一个小的特定区间。最常见的就是归一化,将数据统一映射到[0,1]之间。

    归一化是标准化的特例,标准化是特征缩放的特例。

    数据标准化的具体方法:

  • 中性化

    中性化目的:为了在用某一个因子时能剔除其他因素的影响,使得选出的股票更加分散。相比而言,标准化使不同量级指标之间需要互相比较或者数据需要变得集中。

    主要处理方式为:利用回归得到一个与风险因子线性无关的因子。即通过简历线性回归,提取残差作为中性化后的新因子。这样处理后的中性化因子与风险因子之间的相关性严格为零。
    F a c t o r i = β M ∗ l n ( M k t V a l i ) + ∑ j = 1 n β j ∗ I n d u s t r y j , i + ϵ i Factor_i=\beta_M*ln(MktVal_i)+\sum^n_{j=1}\beta_j*Industry_{j,i}+\epsilon_i Factori=βMln(MktVali)+j=1nβjIndustryj,i+ϵi


  • Reference

  1. 1行代码完成去极值、标准化、行业与市值中性化—以pb因子为例
  2. 数据处理专题:去极值、标准化、中性化
  3. Wikipedia Feature scaling
  4. Wikipedia Normalization (statistics)

这篇关于量化数据预处理:去极值、标准化、中性化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861177

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速