数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组

本文主要是介绍数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 逼近理论的应用——最小二乘问题、解超定、欠定方程组
    • 离散平方逼近
    • 最小二乘解

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

逼近理论的应用——最小二乘问题、解超定、欠定方程组

离散平方逼近

设全空间 X = R n X=\mathbb{R}^n X=Rn, 在 R n \mathbb{R}_n Rn 中取 m < n m<n m<n 个线性无关的向量 ( X 1 , … , X m ) (X_1,\dots,X_m) (X1,,Xm),令 M = s p a n { X 1 , … , X m } M=span\{X_1,\dots,X_m\} M=span{X1,,Xm},则对任意 Y ∈ X \ M Y\in X\backslash M YX\M M M M 中存在唯一的最佳逼近元 X ∗ = ∑ i = 1 m c i X i X^*=\sum\limits_{i=1}^mc_iX_i X=i=1mciXi,其满足以下法方程组
∑ i = 1 m < X i , X j > c i = < Y , X j > \sum\limits_{i=1}^m<X_i,X_j>c_i=<Y,X_j> i=1m<Xi,Xj>ci=<Y,Xj>若设 A = [ X 1 , … , X m ] , C = [ c 1 , … , c m ] T A=[X_1,\dots,X_m],C=[c_1,\dots,c_m]^T A=[X1,,Xm],C=[c1,,cm]T,则方程组等效于
A T A C = A T Y A^TAC=A^TY ATAC=ATY

最小二乘解

求如下的最小化问题的解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2由离散平方逼近的理论,其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

应用:求解超定、欠定方程组

我们把线性方程组 A x = b Ax=b Ax=b 中,
未知数多于方程个数的方程组称为欠定方程组
未知数多于方程个数且有矛盾方程的方程组称为超定方程组

欠定方程组一般有多个解,超定方程组一般无解,故在工程上常用1范数或2范数意义下的最佳逼近解来作为解,即上述的最小二乘解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

参考书籍:《数值分析》李庆扬 王能超 易大义 编

这篇关于数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860233

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造