【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头

2024-03-30 01:28

本文主要是介绍【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


文章目录

  • 🚀🚀🚀前言
  • 一、1️⃣ Auxiliary head辅助头简单介绍
  • 二、2️⃣从损失函数和标签分配分析
  • 三、3️⃣正负样本标签分配
  • 四、4️⃣如何添加Aux head辅助训练头
  • 五、5️⃣实验部分(后续添加,还是跑模型,辅助头真是太慢了!!!)


在这里插入图片描述

👀🎉📜系列文章目录

【YOLOv5改进系列(1)】高效涨点----使用EIoU、Alpha-IoU、SIoU、Focal-EIOU替换CIou
【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU
【YOLOv5改进系列(3)】高效涨点----Optimal Transport Assignment:OTA最优传输方法
【YOLOv5改进系列(4)】高效涨点----添加可变形卷积DCNv2
【YOLOv5改进系列(5)】高效涨点----添加密集小目标检测NWD方法
【YOLOv5改进系列(6)】高效涨点----使用DAMO-YOLO中的Efficient RepGFPN模块替换yolov5中的Neck部分
【YOLOv5改进系列(7)】高效涨点----使用yolov8中的C2F模块替换yolov5中的C3模块

🚀🚀🚀前言

auxiliary head辅助训练头是出至yolov7论文,这两天都在研究如何能够将v8和v7的一些模块添加到yolov5中,添加 Aux head 的主要原因是让网络中间层学到更多信息,有更丰富的梯度信息帮助训练。这里要注意,好的梯度信息能够让相同参数量的网络学的更好。这里的yolov5除了添加了辅助训练头,而且还进行了改进,将之前的OTA最优传输也添加进来,用于优化标签分配策略,添加之后我感觉训练损失慢了5倍不止,但是收敛效果和识别精度要提高了不少。

📜yolov7论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
📌论文代码:https://github.com/WongKinYiu/yolov7


一、1️⃣ Auxiliary head辅助头简单介绍

左边是正常训练,在经过上采样和下采样以及特征融合之后,将输出特征进行分类和识别,而Auxiliary head则是在特征输出之前在中间添加一部分辅助头。
在这里插入图片描述


二、2️⃣从损失函数和标签分配分析

深度监督
意思是在模型训练的过程中,除了最终的检测头,在中间的层也增加了辅助检测头,这个辅助检测头也会加入到损失函数的计算中,并且辅助反向传播,去更新前面的参数。

标签分类
标签分配指的是把输入图片中的标注框和最终预测的预测值对应起来,便于进一步求损失值。

标检测的损失往往由三个部分组成:分类损失Lcls,置信度损失Lobj与边界框的iou损失Lbox。Lcls与Lbox仅由正样本产生,而Lobj则由所有样本产生。

不同于DETR这种端到端的目标检测算法,YOLO会产生大量的预测框,每一个预测框称之为一个样本。那么对于产生的这些预测框,哪些应该作为正样本去与gt(ground truth)计算Lbox与Lcls,哪些又应该作为负样本仅仅贡献Lobj呢?这就取决于所定义的标签分配方法。

在过去的深度网络训练中,标签分配通常直接引用GT(真实标签),并根据给定的规则生成硬标签。比如YOLOv5中,根据中心点所在的位置加入附近两个格子,即同时分配给三个位置来预测。这种方法就叫做硬标签,因为他是直接根据gt来直接产生每个格子的标签,传入损失函数中求损失值

而YOLOv7中使用的是软标签分配方法。在该方法中,Head产生的预测值和GT一起传给分配器,才会得到每个网格的目标值,利用这里的软标签再和预测值一起传入损失函数中求损失值

常规思路是:由于用到了辅助头训练,因此分开求Lead Head和辅助头的软标签和损失值。比如图©中的辅助头训练。
在这里插入图片描述
但是YOLOv7提出了2种新方法。

  • 第一种是辅助头求Loss时,直接利用Lead Head产生的软标签进行计算。(图d)
  • 第二种是在第一种的基础上产生了course标签fine标签两种标签(也就是细粒度和粗糙标签)。(图c 比较难)

其中fine label 会用于训练 Lead head ,而Aux head 因为抽象能力弱则使用 coarse 的标签进行训练。


三、3️⃣正负样本标签分配

OTA最优传输标签分配中认为先根据正样本可能出现的区域进行筛选然后再计算 IoU Loss 或者其他进行进一步的标签分配。YOLO v7 中继承了这一做法,也就有了 coarse 的操作。
在这里插入图片描述
🔥在上图中,展示了如何制作从粗到精的约束导联头引导标签分配器。通过限制两个额外候选正网格(图中黄色网格)的解码器来进行动态约束。理论上,黄色网格需要预测[1,2]的范围来拟合真实值边界盒,我们使解码器只能预测[-0.5,1.5]的范围。这个约束使得模型可以自动学习不同层次的粉色网格和黄色网格。


四、4️⃣如何添加Aux head辅助训练头

🚀首先看一下配置文件的区别,左边是添加了3层辅助训练头的yaml文件,右边是正常的yolov5网络结构。在原有的[17, 20, 23]上面又添加了[24, 25, 26]进行训练。

在这里插入图片描述
🔥🔥🔥🔥🔥🔥除了yaml中的head部分需要修改,另外需要修改的就是损失函数,yolov7中的是ComputeLossAuxOTA损失,因为需要添加很多代码,而且部分代码的修改比较复杂,防止在训练过程中报错,这里建议直接将下面的代码文件,与yolov5-v7.0中的对应代码进行替换。
在这里插入图片描述

五、5️⃣实验部分(后续添加,还是跑模型,辅助头真是太慢了!!!)


在这里插入图片描述

这篇关于【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860163

相关文章

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系