【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头

2024-03-30 01:28

本文主要是介绍【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


文章目录

  • 🚀🚀🚀前言
  • 一、1️⃣ Auxiliary head辅助头简单介绍
  • 二、2️⃣从损失函数和标签分配分析
  • 三、3️⃣正负样本标签分配
  • 四、4️⃣如何添加Aux head辅助训练头
  • 五、5️⃣实验部分(后续添加,还是跑模型,辅助头真是太慢了!!!)


在这里插入图片描述

👀🎉📜系列文章目录

【YOLOv5改进系列(1)】高效涨点----使用EIoU、Alpha-IoU、SIoU、Focal-EIOU替换CIou
【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU
【YOLOv5改进系列(3)】高效涨点----Optimal Transport Assignment:OTA最优传输方法
【YOLOv5改进系列(4)】高效涨点----添加可变形卷积DCNv2
【YOLOv5改进系列(5)】高效涨点----添加密集小目标检测NWD方法
【YOLOv5改进系列(6)】高效涨点----使用DAMO-YOLO中的Efficient RepGFPN模块替换yolov5中的Neck部分
【YOLOv5改进系列(7)】高效涨点----使用yolov8中的C2F模块替换yolov5中的C3模块

🚀🚀🚀前言

auxiliary head辅助训练头是出至yolov7论文,这两天都在研究如何能够将v8和v7的一些模块添加到yolov5中,添加 Aux head 的主要原因是让网络中间层学到更多信息,有更丰富的梯度信息帮助训练。这里要注意,好的梯度信息能够让相同参数量的网络学的更好。这里的yolov5除了添加了辅助训练头,而且还进行了改进,将之前的OTA最优传输也添加进来,用于优化标签分配策略,添加之后我感觉训练损失慢了5倍不止,但是收敛效果和识别精度要提高了不少。

📜yolov7论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
📌论文代码:https://github.com/WongKinYiu/yolov7


一、1️⃣ Auxiliary head辅助头简单介绍

左边是正常训练,在经过上采样和下采样以及特征融合之后,将输出特征进行分类和识别,而Auxiliary head则是在特征输出之前在中间添加一部分辅助头。
在这里插入图片描述


二、2️⃣从损失函数和标签分配分析

深度监督
意思是在模型训练的过程中,除了最终的检测头,在中间的层也增加了辅助检测头,这个辅助检测头也会加入到损失函数的计算中,并且辅助反向传播,去更新前面的参数。

标签分类
标签分配指的是把输入图片中的标注框和最终预测的预测值对应起来,便于进一步求损失值。

标检测的损失往往由三个部分组成:分类损失Lcls,置信度损失Lobj与边界框的iou损失Lbox。Lcls与Lbox仅由正样本产生,而Lobj则由所有样本产生。

不同于DETR这种端到端的目标检测算法,YOLO会产生大量的预测框,每一个预测框称之为一个样本。那么对于产生的这些预测框,哪些应该作为正样本去与gt(ground truth)计算Lbox与Lcls,哪些又应该作为负样本仅仅贡献Lobj呢?这就取决于所定义的标签分配方法。

在过去的深度网络训练中,标签分配通常直接引用GT(真实标签),并根据给定的规则生成硬标签。比如YOLOv5中,根据中心点所在的位置加入附近两个格子,即同时分配给三个位置来预测。这种方法就叫做硬标签,因为他是直接根据gt来直接产生每个格子的标签,传入损失函数中求损失值

而YOLOv7中使用的是软标签分配方法。在该方法中,Head产生的预测值和GT一起传给分配器,才会得到每个网格的目标值,利用这里的软标签再和预测值一起传入损失函数中求损失值

常规思路是:由于用到了辅助头训练,因此分开求Lead Head和辅助头的软标签和损失值。比如图©中的辅助头训练。
在这里插入图片描述
但是YOLOv7提出了2种新方法。

  • 第一种是辅助头求Loss时,直接利用Lead Head产生的软标签进行计算。(图d)
  • 第二种是在第一种的基础上产生了course标签fine标签两种标签(也就是细粒度和粗糙标签)。(图c 比较难)

其中fine label 会用于训练 Lead head ,而Aux head 因为抽象能力弱则使用 coarse 的标签进行训练。


三、3️⃣正负样本标签分配

OTA最优传输标签分配中认为先根据正样本可能出现的区域进行筛选然后再计算 IoU Loss 或者其他进行进一步的标签分配。YOLO v7 中继承了这一做法,也就有了 coarse 的操作。
在这里插入图片描述
🔥在上图中,展示了如何制作从粗到精的约束导联头引导标签分配器。通过限制两个额外候选正网格(图中黄色网格)的解码器来进行动态约束。理论上,黄色网格需要预测[1,2]的范围来拟合真实值边界盒,我们使解码器只能预测[-0.5,1.5]的范围。这个约束使得模型可以自动学习不同层次的粉色网格和黄色网格。


四、4️⃣如何添加Aux head辅助训练头

🚀首先看一下配置文件的区别,左边是添加了3层辅助训练头的yaml文件,右边是正常的yolov5网络结构。在原有的[17, 20, 23]上面又添加了[24, 25, 26]进行训练。

在这里插入图片描述
🔥🔥🔥🔥🔥🔥除了yaml中的head部分需要修改,另外需要修改的就是损失函数,yolov7中的是ComputeLossAuxOTA损失,因为需要添加很多代码,而且部分代码的修改比较复杂,防止在训练过程中报错,这里建议直接将下面的代码文件,与yolov5-v7.0中的对应代码进行替换。
在这里插入图片描述

五、5️⃣实验部分(后续添加,还是跑模型,辅助头真是太慢了!!!)


在这里插入图片描述

这篇关于【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860163

相关文章

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO