大数据导论-大数据可视化——沐雨先生

2024-03-29 18:12

本文主要是介绍大数据导论-大数据可视化——沐雨先生,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【实验目的】

掌握Pthon/R语言进行大数据可视化的方法。掌握点图、线图、面图的绘制方法及常用命令,熟练绘制饼图、柱状图、直方图和箱线图。

【实验内容】

使用Python或R语言,利用iris和mpg数据集完成大数据可视化任务

Python导入iris数据集方法

from sklearn.datasets import load_iris
iris=load_iris()
attributes=iris.data #获取属性数据
#获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target=iris.target
labels=iris.feature_names#获取类别名字
print(labels)
print(attributes)
print(target)

R语言导入iris数据集

data("iris")
summary(iris)

1、利用iris数据集,绘制点图,横纵坐标分别为花萼的长度、花萼的宽度,点的颜色对应不同的莺尾花类型。注意添加横纵坐标的标签、图的标题。

  • 源程序
from sklearn.datasets import load_irisimport matplotlib.pyplot as plt
from sklearn.cluster import KMeansiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # y
labels = iris.feature_names  # 获取类别名字# 样式美化
plt.style.use('seaborn')x = attributes[:, 0:2]
y = targetx0 = attributes[y == 0]
x1 = attributes[y == 1]
x2 = attributes[y == 2]# 为预测结果上色并可视化
plt.scatter(x0[:, 0], x0[:, 1], s=50, c="turquoise", marker='o', label='label0', cmap='viridis')
plt.scatter(x1[:, 0], x1[:, 1], s=50, c="lightcoral", marker='o', label='label1', cmap='viridis')
plt.scatter(x2[:, 0], x2[:, 1], s=50, c="cornflowerblue", marker='o', label='label2', cmap='viridis')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.title('isir_data')
plt.legend(loc=2)
plt.show()

2、随机产生80个服从均值为0、方差为10的正态分布的点,并绘制这80个点。注意添加横纵坐标的标签、图的标题。

  • 源代码
import numpy as npimport matplotlib.pyplot as plt
from pylab import mpl# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = FalseN = 80
x = range(N)
# 随机生成服从正态分布的随机数
y = np.random.normal(loc=0.0, scale=100, size=N)
y.sort()print(x, y)
plt.scatter(x, y, color='indianred',s=10)
plt.xlabel('点', fontsize=15)
plt.ylabel('值', fontsize=15)
plt.title('{}个服从均值为0,方差为10的正态分布——点图'.format(N), fontsize=10)
plt.show()

3、在题目2的基础上将80个点用线连接在一起,并将线型修改为虚线。

  • 源代码
import numpy as npimport matplotlib.pyplot as plt
from pylab import mpl# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = FalseN = 80
x = range(N)
# 随机生成服从正态分布的随机数
y = np.random.normal(loc=0.0, scale=100, size=N)
y.sort()print(x, y)
plt.plot(x, y, color='indianred', linestyle='--')
plt.xlabel('点', fontsize=15)
plt.ylabel('值', fontsize=15)
plt.title('{}个服从均值为0,方差为10的正态分布——折线图'.format(N), fontsize=10)
plt.show()

4、利用mpg数据集,将cty映射到x轴,hwy映射到y轴,并画散点图

  • 源代码
from plotnine.data import mpg
import matplotlib.pyplot as pltx = mpg['cyl'].tolist()
y = mpg['hwy'].tolist()plt.scatter(x, y, s=100, c='indianred', marker='.')
plt.xlabel('cty', fontsize=15)
plt.ylabel('hwy', fontsize=15)
plt.title('cty——>hwy', fontsize=20)
plt.show()

这篇关于大数据导论-大数据可视化——沐雨先生的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859289

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文