指标监控和归因分析——数据异常波动

2024-03-29 09:12

本文主要是介绍指标监控和归因分析——数据异常波动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、基于统计分析检测指标异常

二、指标异常归因分析

2.1 横向归因分析

2.2 纵向归因分析

三、智能指标波动监控&归因分析

3.1 指标看板查看

3.2 指标归因分析

前言

    企业搭建完善,全面的指标体系是企业数据指导业务经营决策的第一步,当指标发生了异常波动(上升或下降),需要企业能够及时发现,并快速找到背后真实的原因,才能针对性的制定相应的策略,否则就是盲打,原地打转。

 指标异常波动的具体场景,比如:

  • 企业关键词的搜索流量突然降低了,是什么原因?
  • 3月的GMV数字比2月下降了40%,应该如何分析?
  • 最近某个品类的订单数猛增,为什么

下面详细介绍如何建立完善的指标异常监控及其对应归因分析机制,当遇到此类问题时,能够快速从数据中发现业务问题与机会,提升业务推进速度。

一、基于统计分析检测指标异常

    企业的日常数据走势会在一定范围内上下浮动,但不同的指标其浮动范围会有差异。当业务在高速增长期,指标每日波动幅度较大;业务在平稳期,指标每日波动幅度则较小;统计粒度越粗,数据量越大,统计结果的波动性越小。因此,对不同的指标需用不同的标准去衡量指标波动是否存在异常。

  指标异常监控方法主要有三种:

  • 基于实际业务经验进行阈值设置:
  • 基于数据结果进行统计分析
  • 融入算法进行建模预测

下面介绍如何基于统计分析方法来评估指标波动是否异常。

   统计学中,指标的数据分布通常满足正态分布。正态分布具有对称性,会用到均值,标准差两个数据。其中均值可以反应数据的平均水平,标准差可以反应数据波动幅度,标准差越大,反映出数据波动性越大。标准差的计算公式如下:

     利用数据在正态分布中的位置可以判断指标波动是否符合预期,在正态分布中,数据分布在2倍标准差内的概率是95.5%,在3倍标准差的概率内是99.7%。日常可以使用2倍标准差作为衡量标准。

    正常数据结果会在 均值±2* 标准差和范围内浮动,若实际数据超过了这个范围,则认为本次数据波动异常。日常数据波动规律会以日、周、月、年为单位出现相同或相似的变化规律,此处以日活指标为例,来说明指标异常波动的监测过程。

   某游戏类APP日活指标通常以周为单位进行数据波动,先计划基于过去5周的数据走势来判断本周一的日活数据是否出现异常波动。

   数据准备如下:

上述数据的前五周周一的均值:10900,标准差:1507,数据的2倍标准差分别为7887、13913,本周周一数据为7700,在2倍标准差范围外,则说明本周一日活指标数据波动异常,需要进一步分析异常波动原因,以判断业务是否真正存在异常

二、指标异常归因分析

 指标归因分析方法有很多,总结起来可以分为两大类:横向归因分析和纵向归因分析。

2.1 横向归因分析

   横向归因分析,指的是对于组合型的指标可以对过程指标做拆分,分析每个过程指标的波动影响因素,再对多个影响因素做整合分析。

   如:昨日的付费金额显著增高。分析增高原因时,先对付费金额工时拆解:付费金额 = 日活*日活 * 平均付费金额,平均付费金额在正常范围内波动,日活显著增加,进一步对相关业务做分析,发现是昨日买量增加带来的结果影响。

2.2 纵向归因分析

   纵向归因分析,即对指标通过维度下钻进行归因分析。维度下钻分析主要包括两个分析粒度:一是分析各个维度对指标的贡献程度,二是分析维度值对指标的贡献程度。

   维度的贡献程度计算可基于每个维度的贡献程度汇总得到,而每个维度值的贡献程度计算有多种计算方式,贡献程度的计算可以基于预测算法等多种方法进行,本文介绍一个简单的基于增长率平均值计算贡献程度的方法。

单一维度下,每个维度值贡献程度可通过下列公式计算:

   下面,以销售额为例,介绍一下计算过程。

某产品线1月1日和1月2日销售额分别为3097万元、3300万元。细分到城市维度,每个城市两天的数据表现如下:


城市维度中:

基于上述步骤即可简单地实现维度贡献度及维度值贡献度的计算。

三、智能指标波动监控&归因分析

   在实际的数据场景中,每个维度下维度值的数量少说几十上百个,多则成千上万个,每天纯手动计算维度贡献程度将是一个巨大的工作量。分析效率过于低下,导致业务方很容易根据经验进行结论推断,如果推断错误,将很有可能产生错误决策。

3.1 指标看板查看

   对于企业关注的指标,可以将指标添加到关注看板中进行日常数据观察与监控。在看板中可直观查看所有指标的当前数据表现、近期数据走势。系统会根据当前数据做智能诊断,判断指标波动是否为正常波动,帮助用户快速定位异常数据,针对性分析与应对数据变化。

3.2 指标归因分析

     当一个指标结果出现异常时,如果依次对维度、维度值进行归因分析是一件工作量很大的事情。能够将分析方法、分析过程系统化,会大大提升归因分析效率,对业务发展形成极为正向的促进作用。

    对执行指标归因分析时,系统会区分维度值计算指标波动情况,进一步计算出维度贡献度,并根据贡献度大小进行降序排序,让用户聚焦于头部更重要的影响因素

   在关注的维度下,用户可以进一步查看细分维度值的贡献度,快速发现数据变化原因,通过数据推动业务提升。

这篇关于指标监控和归因分析——数据异常波动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858203

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda