【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch)

2024-03-29 06:12

本文主要是介绍【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

 

近年来,基于卷积网络(CNN)的监督学习已经 在计算机视觉应用中得到了广泛的采用。相比之下,无监督 使用 CNN 进行学习受到的关注较少。在这项工作中,我们希望能有所帮助 缩小了 CNN 在监督学习和无监督学习方面的成功之间的差距。我们介绍一类称为深度卷积生成的 CNN 对抗性网络(DCGAN),具有一定的架构限制,以及 证明他们是无监督学习的有力候选人。训练 在各种图像数据集上,我们展示了令人信服的证据,表明我们的深度卷积对抗对学习了从对象部分到 生成器和鉴别器中的场景。此外,我们使用学到的 新任务的特征 - 证明它们作为一般图像表示的适用性。(https://arxiv.org/pdf/1511.06434.pdf)

工具

 数据集

方法实现

加载必要的库函数和自定义函数

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as Ffrom torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torchvision.utils import save_image
def get_sample_image(G, n_noise):"""save sample 100 images"""z = torch.randn(100, n_noise).to(DEVICE)y_hat = G(z).view(100, 28, 28) # (100, 28, 28)result = y_hat.cpu().data.numpy()img = np.zeros([280, 280])for j in range(10):img[j*28:(j+1)*28] = np.concatenate([x for x in result[j*10:(j+1)*10]], axis=-1)return img

定义判别模型

class Discriminator(nn.Module):"""Convolutional Discriminator for MNIST"""def __init__(self, in_channel=1, num_classes=1):super(Discriminator, self).__init__()self.conv = nn.Sequential(# 28 -> 14nn.Conv2d(in_channel, 512, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.LeakyReLU(0.2),# 14 -> 7nn.Conv2d(512, 256, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.LeakyReLU(0.2),# 7 -> 4nn.Conv2d(256, 128, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.LeakyReLU(0.2),nn.AvgPool2d(4),)self.fc = nn.Sequential(# reshape input, 128 -> 1nn.Linear(128, 1),nn.Sigmoid(),)def forward(self, x, y=None):y_ = self.conv(x)y_ = y_.view(y_.size(0), -1)y_ = self.fc(y_)return y_

定义生成模型

class Generator(nn.Module):"""Convolutional Generator for MNIST"""def __init__(self, input_size=100, num_classes=784):super(Generator, self).__init__()self.fc = nn.Sequential(nn.Linear(input_size, 4*4*512),nn.ReLU(),)self.conv = nn.Sequential(# input: 4 by 4, output: 7 by 7nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(),# input: 7 by 7, output: 14 by 14nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(),# input: 14 by 14, output: 28 by 28nn.ConvTranspose2d(128, 1, 4, stride=2, padding=1, bias=False),nn.Tanh(),)def forward(self, x, y=None):x = x.view(x.size(0), -1)y_ = self.fc(x)y_ = y_.view(y_.size(0), 512, 4, 4)y_ = self.conv(y_)return y_

 模型超参数定义配置

batch_size = 64criterion = nn.BCELoss()
D_opt = torch.optim.Adam(D.parameters(), lr=0.001, betas=(0.5, 0.999))
G_opt = torch.optim.Adam(G.parameters(), lr=0.001, betas=(0.5, 0.999))max_epoch = 30 # need more than 20 epochs for training generator
step = 0
n_critic = 1 # for training more k steps about Discriminator
n_noise = 100D_labels = torch.ones([batch_size, 1]).to(DEVICE) # Discriminator Label to real
D_fakes = torch.zeros([batch_size, 1]).to(DEVICE) # Discriminator Label to fake

 模型训练

for epoch in range(max_epoch):for idx, (images, labels) in enumerate(data_loader):# Training Discriminatorx = images.to(DEVICE)x_outputs = D(x)D_x_loss = criterion(x_outputs, D_labels)z = torch.randn(batch_size, n_noise).to(DEVICE)z_outputs = D(G(z))D_z_loss = criterion(z_outputs, D_fakes)D_loss = D_x_loss + D_z_lossD.zero_grad()D_loss.backward()D_opt.step()if step % n_critic == 0:# Training Generatorz = torch.randn(batch_size, n_noise).to(DEVICE)z_outputs = D(G(z))G_loss = criterion(z_outputs, D_labels)D.zero_grad()G.zero_grad()G_loss.backward()G_opt.step()if step % 500 == 0:print('Epoch: {}/{}, Step: {}, D Loss: {}, G Loss: {}'.format(epoch, max_epoch, step, D_loss.item(), G_loss.item()))if step % 1000 == 0:G.eval()img = get_sample_image(G, n_noise)imsave('./{}_step{}.jpg'.format(MODEL_NAME, str(step).zfill(3)), img, cmap='gray')G.train()step += 1

测试生成效果

# generation to image
G.eval()
imshow(get_sample_image(G, n_noise), cmap='gray')

 

模型和状态参量保存

def save_checkpoint(state, file_name='checkpoint.pth.tar'):torch.save(state, file_name)# Saving params.
# torch.save(D.state_dict(), 'D_c.pkl')
# torch.save(G.state_dict(), 'G_c.pkl')
save_checkpoint({'epoch': epoch + 1, 'state_dict':D.state_dict(), 'optimizer' : D_opt.state_dict()}, 'D_dc.pth.tar')
save_checkpoint({'epoch': epoch + 1, 'state_dict':G.state_dict(), 'optimizer' : G_opt.state_dict()}, 'G_dc.pth.tar')

应用

DCGAN作为一个成熟的生成模型,在自然图像,医学图像,医学电生理信号数据分析中,都可以用来实现数据的合成,达到数据增强的目的,同时,如何减少增强数据对于后端任务的不利干扰,也是一个需要关注的方面。

这篇关于【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857822

相关文章

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(