JAX 来构建一个基本的人工神经网络(ANN)进行分类任务

2024-03-29 01:20

本文主要是介绍JAX 来构建一个基本的人工神经网络(ANN)进行分类任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import jax.numpy as jnp
from jax import grad, jit, vmap
from jax import random
from jax.experimental import optimizers
from jax.nn import relu, softmax# 构建神经网络模型
def neural_network(params, x):for W, b in params:x = jnp.dot(x, W) + bx = relu(x)return softmax(x)# 初始化参数
def init_params(rng, layer_sizes):keys = random.split(rng, len(layer_sizes))return [(random.normal(k, (m, n)), random.normal(k, (n,))) for k, (m, n) in zip(keys, zip(layer_sizes[:-1], layer_sizes[1:]))]# 定义损失函数
def cross_entropy_loss(params, batch):inputs, targets = batchpreds = neural_network(params, inputs)return -jnp.mean(jnp.sum(preds * targets, axis=1))# 初始化优化器
def init_optimizer(params):return optimizers.adam(init_params)# 更新参数
@jit
def update(params, batch, opt_state):grads = grad(cross_entropy_loss)(params, batch)updates, opt_state = opt.update(grads, opt_state)return opt_params, opt_state# 训练函数
def train(rng, params, data, num_epochs=10, batch_size=32):opt_init, opt_update, get_params = init_optimizer(params)opt_state = opt_init(params)num_batches = len(data) // batch_sizefor epoch in range(num_epochs):rng, subrng = random.split(rng)for batch_idx in range(num_batches):batch = get_batch(data, batch_idx, batch_size)params = update(params, batch, opt_state)train_loss = cross_entropy_loss(params, batch)print(f"Epoch {epoch+1}, Loss: {train_loss}")return get_params(opt_state)# 评估函数
def evaluate(params, data):inputs, targets = datapreds = neural_network(params, inputs)accuracy = jnp.mean(jnp.argmax(preds, axis=1) == jnp.argmax(targets, axis=1))return accuracy# 示例数据集和参数
rng = random.PRNGKey(0)
input_size = 784
num_classes = 10
layer_sizes = [input_size, 128, num_classes]
params = init_params(rng, layer_sizes)
opt = init_optimizer(params)# 使用数据集进行训练
trained_params = train(rng, params, data)# 评估模型
accuracy = evaluate(trained_params, test_data)
print("Test Accuracy:", accuracy)

理解如何使用 JAX 或其他深度学习库构建人工智能(AI)系统需要一定的学习和实践。下面我给你一个简单的例子来说明如何使用 JAX 来构建一个基本的人工神经网络(ANN)进行分类任务。

首先,让我们假设你想解决一个简单的图像分类问题,例如手写数字识别。我们将使用一个基本的全连接神经网络来实现这个任务。

这只是一个简单的示例,用于说明如何使用 JAX 来构建神经网络进行图像分类任务。实际情况下,你可能需要更复杂的网络结构、更大规模的数据集以及更多的训练技巧来实现更好的性能。继续学习和实践将帮助你更好地理解如何构建 AI 系统。

要生成并存储模型文件,你可以使用 joblib 库,就像之前保存模型一样。以下是评估模型并保存模型的代码示例:

python
import joblib# 评估模型
accuracy = evaluate(trained_params, test_data)
print("Test Accuracy:", accuracy)# 将训练好的模型保存为文件
joblib.dump(trained_params, 'trained_model.pkl')


此代码评估了训练好的模型在测试数据集上的准确率,并将模型保存为名为 trained_model.pkl 的文件。在此之后,你可以将 trained_model.pkl 文件用于部署模型或在其他地方进行预测。

让我们假设你已经训练了一个模型来识别手写数字。现在,我将展示如何结合手写图片应用并输出识别结果。我们将使用 Python 的 Flask 框架来构建一个简单的 Web 应用,并在用户上传手写数字图片后,使用训练好的模型进行预测。

首先,确保你已经安装了 Flask:

bash

pip install flask


然后,你可以创建一个名为 app.py 的 Python 脚本,其中包含以下内容:

python
from flask import Flask, render_template, request
from PIL import Image
import numpy as np
import joblibapp = Flask(__name__)# 加载训练好的模型
model = joblib.load('trained_model.pkl')@app.route('/')
def index():return render_template('index.html')@app.route('/predict', methods=['POST'])
def predict():# 获取上传的图片文件file = request.files['file']# 将上传的图片转换为灰度图像并缩放为 28x28 像素img = Image.open(file).convert('L').resize((28, 28))# 将图像数据转换为 numpy 数组img_array = np.array(img) / 255.0  # 将像素值缩放到 [0, 1] 范围内# 将图像数据扁平化成一维数组img_flat = img_array.flatten()# 使用模型进行预测prediction = model.predict([img_flat])[0]return render_template('predict.html', prediction=prediction)if __name__ == '__main__':app.run(debug=True)


上述代码创建了一个基本的 Flask 应用,包括两个路由:

- / 路由用于渲染主页,其中包含一个表单,允许用户上传手写数字图片。
- /predict 路由用于接收上传的图片并使用模型进行预测。

接下来,你需要创建两个 HTML 模板文件 index.html 和 predict.html,并放置在名为 templates 的文件夹中。index.html 用于渲染主页,而 predict.html 用于显示预测结果。

index.html 内容如下:

html
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Handwritten Digit Recognition</title>
</head>
<body><h1>Handwritten Digit Recognition</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file" accept="image/*"><button type="submit">Predict</button></form>
</body>
</html>

现在,你可以运行应用:

bash

python app.py


然后在浏览器中访问 http://localhost:5000/,上传手写数字图片并查看预测结果。

这篇关于JAX 来构建一个基本的人工神经网络(ANN)进行分类任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857230

相关文章

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接