GPT:多轮对话并搭建简单的聊天机器人

2024-03-29 00:52

本文主要是介绍GPT:多轮对话并搭建简单的聊天机器人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 多轮对话

  多轮对话能力至关重要,它不仅能深化交流,精准捕捉对方意图,还能促进有效沟通,增强理解。在智能客服、教育辅导等领域,多轮对话更是提升服务质量、增强用户体验的关键。
注意:大模型没有多轮对话的能力,但基于大模型开发的对话产品是具有对话能力的。换句话说,就是GPT系列模型没有多轮对话能力,但是ChatGPT是能完成多轮对话能力的。 举例如下(ChaGpt结合上一次的对话识别出“好冷啊”这句话的意思是笑话不好笑,而GPT做不到):

ChatGPT结果
在这里插入图片描述
GPT结果
在这里插入图片描述

2 使用OpenAI API简单搭建聊天机器人

  利用OpenAI API实现多轮对话的原理很简单,即:将之前对话的内容传递给GPT模型,以帮助模型生成更准确的回复。具体代码文件目录如下:
在这里插入图片描述
各个文件的具体代码如下:
driver.py(python实现)

from flask import Flask,request,jsonify
from flask import render_template
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
client=OpenAI()
#先加入一些对GPT聊天的基本要求,这两个要一直上传给大模型
history=[{"role":"system","content":"你是一个聊天机器人,你叫Bot."},{"role":"user","content":"每次输出的内容限定在50字以内。"}] 
# 生成对话内容
def chat(message):#将过去5轮对话的内容传递给大模型if len(history)>10:messages=history[:2]+history[-8:]else:messages=history[-10:]#正常结束if message.lower()=="stop":return "对话结束"messages.append({"role":"user","content":message})response=client.chat.completions.create(model="gpt-3.5-turbo",messages=messages,temperature=0.7,)#处理GPT没有输出的情况(比如token用完)if response.choices is None:return "对话结束"reply=response.choices[0].message.contenthistory.append({"role":"user","content":message})history.append({"role":"assistant","content":reply})return replyapp=Flask(__name__)
@app.route('/')
def index():return render_template('chat.html')@app.route('/submit_message',methods=['POST','GET'])
def submit():if request.method == 'POST':message = request.form['input-message']elif request.method == 'GET':message = request.args.get('input-message')if len(message)>0:reply=chat(message)return jsonify({"reply_message":reply})if __name__ == '__main__':app.run(debug=False,host="127.0.0.1",port=5000)

前端页面代码:chat.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Chat Window</title>
<style>.chat-container {display: flex;flex-direction: column;width: 600px;height: 500px;border: 1px solid #ccc;overflow-y: scroll;padding: 10px;margin-left:400px;}.chat-message {padding: 5px;margin-bottom: 10px;border-radius: 5px;}.user-message {align-self: flex-end;background-color: chartreuse;}.bot-message {align-self: flex-start;background-color:bisque;}.input-message {width: 600px;padding: 5px;margin-top: 10px;margin-left: 400px;}button {padding: 5px 10px;background: orange;border: 1px solid #ccc;border-radius: 5px;cursor: pointer;margin-left: 400px;margin-top: 10px;}
</style>
</head>
<body>
<div class="chat-container" id="chat-container"><div class="chat-message bot-message">我是一个聊天机器人,我叫Bot,现在我们可以开始聊天了!</div>
</div>
<form action='/submit_message'  method="GET">
<input type="text" class="input-message" id="input-message" name="input-message" placeholder="Type your message here">
</form>
<button onclick="sendMessage()">Send</button>
<script>async function sendMessage() {const input_message = document.getElementById('input-message').value;const chatContainer = document.getElementById('chat-container');const userMessage = document.createElement('div');userMessage.className = 'chat-message user-message';userMessage.textContent = input_message;chatContainer.appendChild(userMessage);const response=await fetch('http://127.0.0.1:5000/submit_message?input-message='+input_message,{method:'GET',mode:"cors",headers:{'Content-Type':'application/json'},});let result=await response.json();const reply_message=result.reply_message;const botMessage = document.createElement('div');botMessage.className = 'chat-message bot-message';botMessage.textContent = reply_message;chatContainer.appendChild(botMessage);document.getElementById('input-message').value = '';}
</script>
</body>
</html>

最后聊天界面如下(PS: token用光了,后续会替换掉这张图):
在这里插入图片描述
最后,关于多轮对话注意一下几点:

  • 多轮对话费token!多轮对话费token!多轮对话费token!所以传递多少过去的对话内容给大模型需要仔细衡量。
  • 目前代码只是实现了多轮对话的能力,距离解决特定问题的智能客服等产品还很遥远。

参考资料

  1. https://blog.csdn.net/qq_38100666/article/details/130948824

这篇关于GPT:多轮对话并搭建简单的聊天机器人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857173

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Windows Server 2025 搭建NPS-Radius服务器的步骤

《WindowsServer2025搭建NPS-Radius服务器的步骤》本文主要介绍了通过微软的NPS角色实现一个Radius服务器,身份验证和证书使用微软ADCS、ADDS,具有一定的参考价... 目录简介示意图什么是 802.1X?核心作用802.1X的组成角色工作流程简述802.1X常见应用802.

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

Spring Cloud GateWay搭建全过程

《SpringCloudGateWay搭建全过程》:本文主要介绍SpringCloudGateWay搭建全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Spring Cloud GateWay搭建1.搭建注册中心1.1添加依赖1.2 配置文件及启动类1.3 测

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程