看书标记【数据科学:R语言实战 6】

2024-03-28 23:04

本文主要是介绍看书标记【数据科学:R语言实战 6】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看书标记——R语言

  • Chapter 6 数据分析——聚类
      • 6.1 功能包
      • 6.2 K-means聚类
        • 6.2.1 示例
        • 6.2.2 Medoids集群
        • 6.2.3 cascadeKM函数
        • 6.2.4 基于贝叶斯定理
        • 6.2.5 仿射传播聚类
        • 6.2.6 用于估测集群数量的间隙统计量
        • 6.2.7 分级聚类

【数据科学:R语言实战】

Chapter 6 数据分析——聚类

6.1 功能包

  • NbClust:集群指数的数量
  • fpc:包含进行聚类的灵活程序
  • vegan:社区生态功能包
  • apcluster:用于仿射传播聚类操作
  • pvclust:用于分级聚类操作

6.2 K-means聚类

kmeans()

  • 参数
    x 数据集
    centers 包含了所要查找的中心/集群数量
    iter.max 存储了所允许迭代的最大量
    nstart 包含了所要查找的随机整群数
    algorithm 包含了用于确定集群的算法(“Hartigan-Wong\Lloyd”)
    trace 生成跟踪信息以确定中心
6.2.1 示例

数据源葡萄酒质量数据(这个数据从UCI机器学习数据库得到)

data <- read.csv("https://archive.ics.uci.edu/ml/machine-learningdatabases/wine-quality/winequality-white.csv", sep=";")##不是标准CSV文件,用的;分栏
# summary(data)
plot(data) ##关系密切
kmeans(data,5)
# kmeans(data,10)
# kmeans(data,15)
# kmeans(data,20)

最佳集群数量
NbClust()通过使用一些列度量中心和距离的指数对每个集群复查,并对每个集群所设定的优选数字频数进行计数。
data 数据集
diss 相异矩阵
distance 待用的距离度量
min.nc 最小集群数
max.nc 最大集群数
**method ** “ward/single/compete/average/mcquitty/median/centroid/kmeans”
index 待计算的指数
alphaBeale 包含了比尔指数的一个重要数值

install.packages("NbClust")
library(NbClust)
set.seed(2365)  ##保证过程可以复写
nc <- NbClust(data, min.nc=10, max.nc=15, method="kmeans") #propose提议,所以选择最佳聚类中心数11
6.2.2 Medoids集群

fpc中的pamk()将最小相异度作为行列式使用(对应kmeans中的距离)

  • 参数
    data 数据集
    krange 集群数量,默认2~10
    criterion “asw/multiasw/ch” average silhouette 方法
    usepam 逻辑标记,默认TRUE,也可以写为pam,对于大数据集用clara=TRUE
    scaling 逻辑标记,默认FALSE,均方根会对变量进行划分
    alpha dudahart方法的调谐常数,默认0.001
    diss 使用相异点矩阵的逻辑标记
    critout 默认为FALSE,集群印刷标准的逻辑标记
install.packages("fpc")
library(fpc)
best <- pamk(data);best
library(cluster)
plot(pam(data, best$nc))
6.2.3 cascadeKM函数

vegan包里的cascadeKM()是kmeans实施的包装器,用于确定最佳k值

install.packages("vegan")
library(vegan)
fit <- cascadeKM(scale(data, center=TRUE, scale=TRUE), 10, 15) ##inf.gr下限,sup.gr上限,iter迭代次数默认100,criterion ="calinski/ssi"选取集群标准
plot(fit, sortg=TRUE, grmts.plot=TRUE)  ##选聚类数对应数值最大的
6.2.4 基于贝叶斯定理

mclust包中的Mclust()是基于数据显示的贝叶斯定理信息 选取最佳集群大小
数据源葡萄酒质量数据(这个数据从UCI机器学习数据库得到)

library(mclust)
d <- Mclust(as.matrix(data), G=10:15)
plot(d)
##图一,不同方式对应的BIC信息与集群数量,选取BIC最小的项
##图二,相关性表
##图三,每个属性对比的对数密度等值线图
summary(d) #n观测数量和迭代次数,最佳集群数量为11,各个集群对应的数据点
6.2.5 仿射传播聚类

apcluster()实施仿射传播聚类,通过比较指定集群相关信息的不同数值实施仿射传播聚类。

install.packages("apcluster")
library(apcluster)
neg <- negDistMat(data, r=2)
ap <- apcluster(neg) ;#ap
summary(ap)
length(ap@clusters)  ##最佳集群数81,存在高仿射性
6.2.6 用于估测集群数量的间隙统计量

clusGap()为一系列集群值计算聚类度量适合度或间隙统计量

  • 参数
    x 数据集
    FUNcluster 聚类函数
    K.max 最大集群数
    B 所用Monte Carlo样品数
    verbose 用以辨别是否生成进度输出
data <- read.csv("https://archive.ics.uci.edu/ml/machine-learningdatabases/wine-quality/winequality-white.csv", sep=";")##不是标准CSV文件,用的;分栏
library(cluster)
clusGap(data, kmeans, 15, B=100, verbose=interactive()) ###选gap最大的集群数
6.2.7 分级聚类

pvclust包中的pvclust()实施分类聚类

  • 参数
    data 数据框矩阵
    method.hclust 凝聚算法"默认averge/ward/single/complete/mcquitty/median/centroid"
    method.dist 待用距离度量"默认correlation/uncentered/abscor"
    use.cor 待用的用以计算空缺值相关性的方法"all.obs/complete.obs/pairwise.complete.obs"
install.packages("pvclust")
library(pvclust)
data <- read.csv("https://archive.ics.uci.edu/ml/machine-learningdatabases/wine-quality/winequality-white.csv", sep=";")##不是标准CSV文件,用的;分栏
pv <- pvclust(data);pv
plot(pv)  ##聚类系统树图

转载 机器学习确定最佳聚类数目的10种方法

这篇关于看书标记【数据科学:R语言实战 6】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856936

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使