看书标记【数据科学:R语言实战 6】

2024-03-28 23:04

本文主要是介绍看书标记【数据科学:R语言实战 6】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看书标记——R语言

  • Chapter 6 数据分析——聚类
      • 6.1 功能包
      • 6.2 K-means聚类
        • 6.2.1 示例
        • 6.2.2 Medoids集群
        • 6.2.3 cascadeKM函数
        • 6.2.4 基于贝叶斯定理
        • 6.2.5 仿射传播聚类
        • 6.2.6 用于估测集群数量的间隙统计量
        • 6.2.7 分级聚类

【数据科学:R语言实战】

Chapter 6 数据分析——聚类

6.1 功能包

  • NbClust:集群指数的数量
  • fpc:包含进行聚类的灵活程序
  • vegan:社区生态功能包
  • apcluster:用于仿射传播聚类操作
  • pvclust:用于分级聚类操作

6.2 K-means聚类

kmeans()

  • 参数
    x 数据集
    centers 包含了所要查找的中心/集群数量
    iter.max 存储了所允许迭代的最大量
    nstart 包含了所要查找的随机整群数
    algorithm 包含了用于确定集群的算法(“Hartigan-Wong\Lloyd”)
    trace 生成跟踪信息以确定中心
6.2.1 示例

数据源葡萄酒质量数据(这个数据从UCI机器学习数据库得到)

data <- read.csv("https://archive.ics.uci.edu/ml/machine-learningdatabases/wine-quality/winequality-white.csv", sep=";")##不是标准CSV文件,用的;分栏
# summary(data)
plot(data) ##关系密切
kmeans(data,5)
# kmeans(data,10)
# kmeans(data,15)
# kmeans(data,20)

最佳集群数量
NbClust()通过使用一些列度量中心和距离的指数对每个集群复查,并对每个集群所设定的优选数字频数进行计数。
data 数据集
diss 相异矩阵
distance 待用的距离度量
min.nc 最小集群数
max.nc 最大集群数
**method ** “ward/single/compete/average/mcquitty/median/centroid/kmeans”
index 待计算的指数
alphaBeale 包含了比尔指数的一个重要数值

install.packages("NbClust")
library(NbClust)
set.seed(2365)  ##保证过程可以复写
nc <- NbClust(data, min.nc=10, max.nc=15, method="kmeans") #propose提议,所以选择最佳聚类中心数11
6.2.2 Medoids集群

fpc中的pamk()将最小相异度作为行列式使用(对应kmeans中的距离)

  • 参数
    data 数据集
    krange 集群数量,默认2~10
    criterion “asw/multiasw/ch” average silhouette 方法
    usepam 逻辑标记,默认TRUE,也可以写为pam,对于大数据集用clara=TRUE
    scaling 逻辑标记,默认FALSE,均方根会对变量进行划分
    alpha dudahart方法的调谐常数,默认0.001
    diss 使用相异点矩阵的逻辑标记
    critout 默认为FALSE,集群印刷标准的逻辑标记
install.packages("fpc")
library(fpc)
best <- pamk(data);best
library(cluster)
plot(pam(data, best$nc))
6.2.3 cascadeKM函数

vegan包里的cascadeKM()是kmeans实施的包装器,用于确定最佳k值

install.packages("vegan")
library(vegan)
fit <- cascadeKM(scale(data, center=TRUE, scale=TRUE), 10, 15) ##inf.gr下限,sup.gr上限,iter迭代次数默认100,criterion ="calinski/ssi"选取集群标准
plot(fit, sortg=TRUE, grmts.plot=TRUE)  ##选聚类数对应数值最大的
6.2.4 基于贝叶斯定理

mclust包中的Mclust()是基于数据显示的贝叶斯定理信息 选取最佳集群大小
数据源葡萄酒质量数据(这个数据从UCI机器学习数据库得到)

library(mclust)
d <- Mclust(as.matrix(data), G=10:15)
plot(d)
##图一,不同方式对应的BIC信息与集群数量,选取BIC最小的项
##图二,相关性表
##图三,每个属性对比的对数密度等值线图
summary(d) #n观测数量和迭代次数,最佳集群数量为11,各个集群对应的数据点
6.2.5 仿射传播聚类

apcluster()实施仿射传播聚类,通过比较指定集群相关信息的不同数值实施仿射传播聚类。

install.packages("apcluster")
library(apcluster)
neg <- negDistMat(data, r=2)
ap <- apcluster(neg) ;#ap
summary(ap)
length(ap@clusters)  ##最佳集群数81,存在高仿射性
6.2.6 用于估测集群数量的间隙统计量

clusGap()为一系列集群值计算聚类度量适合度或间隙统计量

  • 参数
    x 数据集
    FUNcluster 聚类函数
    K.max 最大集群数
    B 所用Monte Carlo样品数
    verbose 用以辨别是否生成进度输出
data <- read.csv("https://archive.ics.uci.edu/ml/machine-learningdatabases/wine-quality/winequality-white.csv", sep=";")##不是标准CSV文件,用的;分栏
library(cluster)
clusGap(data, kmeans, 15, B=100, verbose=interactive()) ###选gap最大的集群数
6.2.7 分级聚类

pvclust包中的pvclust()实施分类聚类

  • 参数
    data 数据框矩阵
    method.hclust 凝聚算法"默认averge/ward/single/complete/mcquitty/median/centroid"
    method.dist 待用距离度量"默认correlation/uncentered/abscor"
    use.cor 待用的用以计算空缺值相关性的方法"all.obs/complete.obs/pairwise.complete.obs"
install.packages("pvclust")
library(pvclust)
data <- read.csv("https://archive.ics.uci.edu/ml/machine-learningdatabases/wine-quality/winequality-white.csv", sep=";")##不是标准CSV文件,用的;分栏
pv <- pvclust(data);pv
plot(pv)  ##聚类系统树图

转载 机器学习确定最佳聚类数目的10种方法

这篇关于看书标记【数据科学:R语言实战 6】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856936

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=