大数据导论-大数据分析——沐雨先生

2024-03-28 18:20

本文主要是介绍大数据导论-大数据分析——沐雨先生,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【实验目的】

掌握Pthon/R语言进行大数据分析,包括分类任务和聚类任务。掌握kNN、决策树、SVM分类器、kmeans聚类算法的Python或R语言编程方法。

【实验内容】

使用Python或R语言完成大数据分析任务
1、使用kNN、决策树、SVM模型,对iris数据集进行分类
2、使用kmeans聚类算法对iris数据集进行聚类

  • Python导入iris数据集方法
from sklearn.datasets import load_iris
iris=load_iris()
attributes=iris.data #获取属性数据
#获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target=iris.target
labels=iris.feature_names#获取类别名字
print(labels)
print(attributes)
print(target)
  • R语言导入iris数据集
data("iris")
summary(iris)

我选择使用Python语言完成实验。

1.kNN算法

import randomimport numpy as np
import operator
from sklearn.datasets import load_irisiris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_namesf1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):f1[i].append(f2[i])dataset.append(f1[i])i = i+1
library = []
n = int(len(f1)*0.3)
samples = random.sample(f1, n)
for x in dataset:if x not in samples:library.append(x);def createDataSet():#四组二维特征group = np.array(library)#四组特征的标签labels = f2return group, labelsdef classify0(inX, dataSet, labels, k):''':param inX: 测试样本(arr):param dataSet: 训练数据集(arr):param labels: 类别(list):param k:(int):return: 类别'''#计算距离dataSetSize = dataSet.shape[0]  # 样本数量diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #tile(inX{数组},(dataSetSize{倍数},1{竖向})):将数组(inX)竖向(1)复制dataSetSize倍sqDiffMat = diffMat ** 2                        #先求平方sqDistances = sqDiffMat.sum(axis=1)             #再求平方和distances = sqDistances ** 0.5                  #开根号,欧式距离sortedDistIndicies = distances.argsort()  #距离从小到大排序的索引classCount = {}for i in range(k):voteIlabel = labels[sortedDistIndicies[i]]  #用索引得到相应的类别classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1return max(classCount, key=lambda k: classCount[k])  # 返回频数最大的类别if __name__ == '__main__':#创建数据集group, labels = createDataSet()#测试集i=0;while i<len(samples):test_class = classify0(samples[i], group, labels, 3)print("测试用例:",samples[i],"所属类别: ",test_class)i+=1#打印分类结果

2.决策树算法

# tree.py
import copy
import random
from sklearn.datasets import load_iris# 找到出现次数最多的分类名称
import operator
# 计算给定数据集的熵
from math import logdef calShannonEnt(dataSet):numEntries = len(dataSet)labelCounts = {}# 为所有可能的分类创建字典for featVec in dataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0for key in labelCounts:# 计算熵,先求pprob = float(labelCounts[key]) / numEntriesshannonEnt -= prob * log(prob, 2)return shannonEntiris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_names
labels1=copy.deepcopy(labels)f1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):f1[i].append(f2[i])dataset.append(f1[i])i = i+1library = []
n = int(len(f1)*0.3)
samples = random.sample(dataset,n)
for x in dataset:if x not in samples:library.append(x)while i<len(samples):del samples[i][4]i+=1# 构造数据集
def creatDataSet():dataSet1 = librarylabels1 = labelsreturn dataSet1, labels1# 根据属性及其属性值划分数据集
def splitDataSet(dataSet, axis, value):'''dataSet : 待划分的数据集axis : 属性及特征value : 属性值及特征的hasattr值'''retDataSet = []for featVet in dataSet:if featVet[axis] == value:reducedFeatVec = featVet[:axis]reducedFeatVec.extend(featVet[axis + 1:])retDataSet.append(reducedFeatVec)return retDataSet# 选择最好的数据集划分方式,及根绝信息增益选择划分属性
def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1baseEntropy = calShannonEnt(dataSet)bestInfoGain, bestFeature = 0, -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0.0# 计算每种划分方式的信息熵for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif (infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeaturedef majorityCnt(classList):classCount = {}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]# 创建树的函数
def creatTree(dataSet, labels):classList = [example[-1] for example in dataSet]# 类别完全相同停止划分if classList.count(classList[0]) == len(classList):return classList[0]if len(dataSet[0]) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel: {}}del (labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:sublabels = labels[:]myTree[bestFeatLabel][value] = creatTree(splitDataSet(dataSet, bestFeat, value), sublabels)return myTreedef classify(inputTree,featLabels,testVec):global classLabelfirstStr = list(inputTree.keys())[0]secondDict = inputTree[firstStr]featIndex = featLabels.index(firstStr)for key in secondDict.keys():if testVec[featIndex] == key:if type(secondDict[key]).__name__=='dict':classLabel = classify(secondDict[key],featLabels,testVec)else: classLabel = secondDict[key]return classLabelif __name__ == '__main__':myData, labels = creatDataSet()print("数据集:{}\n 标签:{}".format(myData, labels))print("该数据集下的香农熵为:{}".format(calShannonEnt(myData)))#print("划分前的数据集:{}\n \n按照“离开水是否能生存”为划分属性,得到下一层待划分的结果为:\n{}--------{}".format(myData, splitDataSet(myData, 0, 0),#splitDataSet(myData, 0, 1)))chooseBestFeatureToSplit(myData)myTree = creatTree(myData, labels)i=0print("决策树:",myTree)while (i < len(samples)):f = classify(myTree, labels1, samples[i])print("测试用例:", samples[i], "测试结果: ", f)i = i + 1{'petal length (cm)': {1.7: 0, 1.4: 0, 1.6: 0, 1.3: 0, 1.5: 0, 1.1: 0, 1.2: 0, 1.0: 0, 1.9: 0, 4.7: 1,4.5:  {'sepal length (cm)': {4.9: 2, 5.6: 1, 6.0: 1, 5.7: 1, 6.4: 1, 6.2: 1, 5.4: 1}},4.9: {'sepal width (cm)': {2.5: 1, 3.0: 2, 3.1: 1, 2.8: 2, 2.7: 2}}, 4.0: 1,5.0: {'sepal length (cm)': {6.3: 2, 5.7: 2, 6.7: 1, 6.0: 2}}, 6.0: 2, 3.5: 1, 3.0: 1, 4.6: 1, 4.4: 1, 4.1: 1,5.1: {'sepal length (cm)': {5.8: 2, 6.9: 2, 6.3: 2, 6.0: 1, 6.5: 2, 5.9: 2}}, 5.9: 2, 5.6: 2, 5.5: 2, 5.4: 2, 6.6: 2, 6.1: 2, 6.9: 2, 6.4: 2, 3.6: 1, 3.3: 1, 3.8: 1, 3.7: 1, 4.2: 1,4.8: {'sepal length (cm)': {6.0: 2, 5.9: 1, 6.8: 1, 6.2: 2}}, 4.3: 1, 5.8: 2, 5.3: 2, 5.7: 2, 5.2: 2, 6.3: 2, 6.7: 2, 3.9: 1}}

3.SVM算法

from sklearn.datasets import load_iris
from sklearn import svm
import numpy as np
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colorsiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # Y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes)x = attributes[:, 0:2]
y = target
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, random_state=1, test_size=0.3)clf = svm.SVC(kernel='linear')
clf.fit(x_train, y_train)acc = clf.predict(x_train) == y_train.flat
print('Accuracy:%f' % (np.mean(acc)))# print("SVM-训练集的准确率:", clf.score(x_train, y_train))
# # y_hat = clf.predict(x_train)
#
# print("SVM-测试集的准确率:", clf.score(x_test, y_test))
# # y_hat = clf.predict(x_test)x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]
grid_test = np.stack((x1.flat, x2.flat), axis=1)print("grid_test = \n", grid_test)
grid_hat = clf.predict(grid_test)
print("grid_hat = \n", grid_hat)
grid_hat = grid_hat.reshape(x1.shape)# mpl.rcParams['font.sans-serif'] = [u'SimHei']
# mpl.rcParams['axes.unicode_minus'] = Falsecm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
# cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.plot(x[:, 0], x[:, 1], 'o', alpha=0.5, color='blue', markeredgecolor='k')
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10)
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("SVM")
plt.show()

4.Kmeans算法

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.cluster import KMeansiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes.shape)
print(attributes)
print(target)plt.style.use('seaborn')  # 样式美化x = attributes[:, 0:2]
y = target
plt.scatter(attributes[:, 0], attributes[:, 1], s=50, marker='o', label='see')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.show()est = KMeans(n_clusters=3)  # 选择聚为 x 类
est.fit(attributes)
y_kmeans = est.predict(attributes)  # 预测类别,输出为含0、1、2、3数字的数组
x0 = attributes[y_kmeans == 0]
x1 = attributes[y_kmeans == 1]
x2 = attributes[y_kmeans == 2]# 为预测结果上色并可视化
x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()plt.scatter(x0[:, 0], x0[:, 1], s=50, c="red", marker='o', label='label0', cmap='viridis')
plt.scatter(x1[:, 0], x1[:, 1], s=50, c="green", marker='*', label='label1', cmap='viridis')
plt.scatter(x2[:, 0], x2[:, 1], s=50, c="blue", marker='+', label='label2', cmap='viridis')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
centers = est.cluster_centers_  # 找出中心
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)  # 绘制中心点
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("kmeans")
plt.legend(loc=2)
plt.show()

这篇关于大数据导论-大数据分析——沐雨先生的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/856359

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模