Day23|二叉树part09:669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、总结篇

本文主要是介绍Day23|二叉树part09:669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、总结篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

669. 修剪二叉搜索树

一刷完全没有思路,现在有点思路了,但是还是独立写不出来。

class Solution {public TreeNode delete(TreeNode node, int low, int high){if(node == null){return null;}if(node.val < low){return delete(node.right, low, high);}else if(node.val > high){return delete(node.left, low, high);}node.left = delete(node.left, low, high);node.right = delete(node.right, low, high);return node;}public TreeNode trimBST(TreeNode root, int low, int high) {return delete(root, low, high);}
}
  • 如果node(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。

所以,如果当前节点的值小于low,那么它的左子树中的所有节点的值也一定小于low。因此,我们可以放心地舍弃当前节点及其左子树,然后在右子树中递归寻找满足条件的节点。

我们会删除那些值不在给定范围内的节点,但是这个“删除”实际上是在寻找和构建新的二叉搜索树,而不是真正意义上的删除操作

108.将有序数组转换为二叉搜索树

class Solution {public void testSortedArrayToBST() {// 创建一个二叉搜索树int[] nums = new int[]{-10,-3,0,5,9};TreeNode root = sortedArrayToBST(nums);System.out.println(root.val);}public TreeNode buildBST(int[] nums, int i, int j){if(i > j){return null;}int middle = (i + j) / 2;TreeNode node = new TreeNode(nums[middle]);node.left = buildBST(nums, i, middle - 1);node.right = buildBST(nums, middle + 1, j);return node;}public TreeNode sortedArrayToBST(int[] nums) {return buildBST(nums, 0, nums.length - 1);}
}
  • 这里记得传入的是0, nums.length - 1,不然会越界;

538.把二叉搜索树转换为累加树

看着很难,没想到这么简单!记住遍历顺序是中序但是右中左,用一个sum维护总和。

class Solution {private int sum = 0;public void traversal(TreeNode node){if(node == null){return;}traversal(node.right);sum += node.val;node.val = sum;traversal(node.left);return;}public TreeNode convertBST(TreeNode root) {traversal(root);return root;}
}
  • 为什么是右根左,因为二叉树左小右大。

如果我们按照右-根-左的顺序遍历并更新节点值,那么当我们访问一个节点时,我们已经访问过所有大于该节点值的节点,并且已经计算了它们的和。因此,我们可以直接使用这个和来更新当前节点的值。

114. 二叉树转化为链表

  • 注意 flatten 函数的签名,返回类型为 void,也就是说题目希望我们在原地把二叉树拉平成链表。
  • 否则可以采用这样的方法:
class Solution {private TreeNode dummy = new TreeNode(-1);private TreeNode p = dummy;public void traversal(TreeNode node){if(node == null){return;}p.right = new TreeNode(node.val);p = p.right;traversal(node.left);traversal(node.right);}public void flatten(TreeNode root) {traversal(root);root = dummy.right;}
}

(但是运行后发现并没有修改root的值,这是因为:

,flatten 方法试图修改 root 的引用,但是在 Java 中,参数传递是按值传递的,这意味着你只是复制了 root 的引用,而不是引用本身。因此,当你修改 root 时,你只是修改了这个复制的引用,而不是原始的 root 引用。

  • 因为只能在树上修改,方法是先把左右子树拉平,再把右子树的平序列接到左子树的平序列下面:
class Solution {public void traversal(TreeNode node){if(node == null){return;}//拉平traversal(node.left);traversal(node.right);//保存当前节点的左子节点和右子节点的引用。TreeNode left = node.left;TreeNode right = node.right;node.left = null;node.right = left;//接上TreeNode p = node;while (p.right != null) {p = p.right;}p.right = right;}public void flatten(TreeNode root) {traversal(root);}
}

二叉树总结篇

求二叉树的属性

  • 二叉树:是否对称(opens new window)
    • 递归:后序,比较的是根节点的左子树与右子树是不是相互翻转
    • 迭代:使用队列/栈将两个节点顺序放入容器中进行比较
  • 二叉树:求最大深度(opens new window)
    • 递归:后序,求根节点最大高度就是最大深度,通过递归函数的返回值做计算树的高度
    • 迭代:层序遍历
  • 二叉树:求最小深度(opens new window)
    • 递归:后序,求根节点最小高度就是最小深度,注意最小深度的定义
    • 迭代:层序遍历
  • 二叉树:求有多少个节点(opens new window)
    • 递归:后序,通过递归函数的返回值计算节点数量
    • 迭代:层序遍历
  • 二叉树:是否平衡(opens new window)
    • 递归:后序,注意后序求高度和前序求深度,递归过程判断高度差
    • 迭代:效率很低,不推荐
  • 二叉树:找所有路径(opens new window)
    • 递归:前序,方便让父节点指向子节点,涉及回溯处理根节点到叶子的所有路径
    • 迭代:一个栈模拟递归,一个栈来存放对应的遍历路径
  • 二叉树:递归中如何隐藏着回溯(opens new window)
    • 详解二叉树:找所有路径 (opens new window)中递归如何隐藏着回溯
  • 二叉树:求左叶子之和(opens new window)
    • 递归:后序,必须三层约束条件,才能判断是否是左叶子。
    • 迭代:直接模拟后序遍历
  • 二叉树:求左下角的值(opens new window)
    • 递归:顺序无所谓,优先左孩子搜索,同时找深度最大的叶子节点。
    • 迭代:层序遍历找最后一行最左边
  • 二叉树:求路径总和(opens new window)
    • 递归:顺序无所谓,递归函数返回值为bool类型是为了搜索一条边,没有返回值是搜索整棵树。
    • 迭代:栈里元素不仅要记录节点指针,还要记录从头结点到该节点的路径数值总和

#二叉树的修改与构造

  • 翻转二叉树(opens new window)
    • 递归:前序,交换左右孩子
    • 迭代:直接模拟前序遍历
  • 构造二叉树(opens new window)
    • 递归:前序,重点在于找分割点,分左右区间构造
    • 迭代:比较复杂,意义不大
  • 构造最大的二叉树(opens new window)
    • 递归:前序,分割点为数组最大值,分左右区间构造
    • 迭代:比较复杂,意义不大
  • 合并两个二叉树(opens new window)
    • 递归:前序,同时操作两个树的节点,注意合并的规则
    • 迭代:使用队列,类似层序遍历

#求二叉搜索树的属性

  • 二叉搜索树中的搜索(opens new window)
    • 递归:二叉搜索树的递归是有方向的
    • 迭代:因为有方向,所以迭代法很简单
  • 是不是二叉搜索树(opens new window)
    • 递归:中序,相当于变成了判断一个序列是不是递增的
    • 迭代:模拟中序,逻辑相同
  • 求二叉搜索树的最小绝对差(opens new window)
    • 递归:中序,双指针操作
    • 迭代:模拟中序,逻辑相同
  • 求二叉搜索树的众数(opens new window)
    • 递归:中序,清空结果集的技巧,遍历一遍便可求众数集合
    • 二叉搜索树转成累加树(opens new window)
    • 递归:中序,双指针操作累加
    • 迭代:模拟中序,逻辑相同

#二叉树公共祖先问题

  • 二叉树的公共祖先问题(opens new window)
    • 递归:后序,回溯,找到左子树出现目标值,右子树节点目标值的节点。
    • 迭代:不适合模拟回溯
  • 二叉搜索树的公共祖先问题(opens new window)
    • 递归:顺序无所谓,如果节点的数值在目标区间就是最近公共祖先
    • 迭代:按序遍历

#二叉搜索树的修改与构造

  • 二叉搜索树中的插入操作(opens new window)
    • 递归:顺序无所谓,通过递归函数返回值添加节点
    • 迭代:按序遍历,需要记录插入父节点,这样才能做插入操作
  • 二叉搜索树中的删除操作(opens new window)
    • 递归:前序,想清楚删除非叶子节点的情况
    • 迭代:有序遍历,较复杂
  • 修剪二叉搜索树(opens new window)
    • 递归:前序,通过递归函数返回值删除节点
    • 迭代:有序遍历,较复杂
  • 构造二叉搜索树(opens new window)
    • 递归:前序,数组中间节点分割
    • 迭代:较复杂,通过三个队列来模拟

这篇关于Day23|二叉树part09:669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、总结篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855997

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL