【智能算法】流向算法(FDA)原理及实现

2024-03-28 10:20

本文主要是介绍【智能算法】流向算法(FDA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2021年,H Karami等人受到水流运动规律启发,提出了流向算法(Flow Direction Algorithm, FDA)。

2.算法原理

2.1算法思想

FDA受到了流入排水池的水流的启发,模拟了水流朝向排水池最低高度出口的方向流动 (水往低处流~)。首先创建一个初始种群在排水池即问题的搜索空间中,然后考虑了邻近水流及其坡度对水流的影响,最后使水流流向海拔较低的位置,也就是排水池的最低海拔出口点(适应度值度量)。
在这里插入图片描述

2.2算法过程

创建水流领域

FDA 假设每个水流附近存在 β 个邻域,则第i个水流的第j个邻居位置为:
N ( j ) = F ( i ) + R N × Δ (1) N\left(j\right)=F\left(i\right)+R_{\mathbb{N}}\times\Delta \tag{1} N(j)=F(i)+RN×Δ(1)
其中,RN是均值为0,标准差为1的正态分布随机数;Δ 是用来控制算法搜索空间大小的控制参数,其值越小算法搜索范围越小,反之搜索空间越大.Δ的值从一个较大值线性减小到较小值,并朝向随机位置以增加多样性,表述为:
Δ = [ R × X r a n d − R × F ( i ) ] × ∥ X b e s t − F ( i ) ∥ × W (2) \begin{aligned}\Delta&=\bigl[R\times X_{\mathrm{rand}}-R\times F(i)\bigr]\times\left\|X_{\mathrm{best}}-F(i)\right\|\times W\end{aligned}\tag{2} Δ=[R×XrandR×F(i)]×XbestF(i)×W(2)
其中,Xrand为随机水流位置,Xbest为当代最优水流位置,W为非线性权重:
W = ( 1 − τ τ max ⁡ ) 2 × R N × ( R u × τ τ max ⁡ ) × R u (3) W=\left(1-\frac{\tau}{\tau_{\max}}\right)^{2\times R_{N}}\times\left(R_{\mathrm{u}}\times\frac{\tau}{\tau_{\max}}\right)\times R_{\mathrm{u}}\tag{3} W=(1τmaxτ)2×RN×(Ru×τmaxτ)×Ru(3)
其中,τ 和 τmax分别为当前迭代次数和最大迭代次数,Ru为均匀分布的随机向量。
更新水流位置
FDA算法中水流流向海拔最低的方向,若最优邻居N(k)的适应度fN(k)小于当前水流的适应度fF(i),则当前水流流向该邻居,此时新的水流位置为:
F n e w ( i ) = F ( i ) + v F ( i ) − N ( k ) ∥ F ( i ) − N ( k ) ∥ (4) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+v\frac{\boldsymbol{F}(i)-\boldsymbol{N}(k)}{\left\Vert\boldsymbol{F}(i)-\boldsymbol{N}(k)\right\Vert}\tag{4} Fnew(i)=F(i)+vF(i)N(k)F(i)N(k)(4)
其中,k为最优邻居的序号;v为水流速度,与坡度直接相关:
v = R N × S 0 ( i , k , D ) (5) v=R_\text{N}\times S_0(i,k,D)\tag{5} v=RN×S0(i,k,D)(5)
其中,S0(i,k,D)为最优邻居N(k)和水流F(i)位置之间的斜率为:
S 0 ( i , k , D ) = f F ( i ) − f N ( k ) ∥ F ( i , d ) − N ( k , d ) ∥ (6) S_0(i,k,D)=\frac{f_{\boldsymbol{F}(i)}-f_{\boldsymbol{N}(k)}}{\left\|F(i,d)-N(k,d)\right\|}\tag{6} S0(i,k,D)=F(i,d)N(k,d)fF(i)fN(k)(6)
如果随机水流的适应度优于当前水流的适应度,那么当前水流将沿着随机水流的方向流动。
F n e w ( i ) = F ( i ) + R N × [ F ( r ) − F ( i ) ] (7) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+R_{\mathrm{N}}\times\left[\boldsymbol{F}(r)-\boldsymbol{F}(i)\right]\tag{7} Fnew(i)=F(i)+RN×[F(r)F(i)](7)
如果当前水流的适应度优于其最优邻居的适应度,根据适应度值来决定当前水流是沿着该随机水流的方向移动,还是沿着最优水流的方向移动。
F n e w ( i ) = F ( i ) + 2 R N × [ X b e s t − F ( i ) ] (8) \boldsymbol{F}_\mathrm{new}(i)=\boldsymbol{F}(i)+2R_\mathrm{N}\times\left[\boldsymbol{X}_\mathrm{best}-\boldsymbol{F}(i)\right]\tag{8} Fnew(i)=F(i)+2RN×[XbestF(i)](8)

流程图
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Karami H, Anaraki M V, Farzin S, et al. Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems[J]. Computers & Industrial Engineering, 2021, 156: 107224.

这篇关于【智能算法】流向算法(FDA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855350

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到