【智能算法】流向算法(FDA)原理及实现

2024-03-28 10:20

本文主要是介绍【智能算法】流向算法(FDA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2021年,H Karami等人受到水流运动规律启发,提出了流向算法(Flow Direction Algorithm, FDA)。

2.算法原理

2.1算法思想

FDA受到了流入排水池的水流的启发,模拟了水流朝向排水池最低高度出口的方向流动 (水往低处流~)。首先创建一个初始种群在排水池即问题的搜索空间中,然后考虑了邻近水流及其坡度对水流的影响,最后使水流流向海拔较低的位置,也就是排水池的最低海拔出口点(适应度值度量)。
在这里插入图片描述

2.2算法过程

创建水流领域

FDA 假设每个水流附近存在 β 个邻域,则第i个水流的第j个邻居位置为:
N ( j ) = F ( i ) + R N × Δ (1) N\left(j\right)=F\left(i\right)+R_{\mathbb{N}}\times\Delta \tag{1} N(j)=F(i)+RN×Δ(1)
其中,RN是均值为0,标准差为1的正态分布随机数;Δ 是用来控制算法搜索空间大小的控制参数,其值越小算法搜索范围越小,反之搜索空间越大.Δ的值从一个较大值线性减小到较小值,并朝向随机位置以增加多样性,表述为:
Δ = [ R × X r a n d − R × F ( i ) ] × ∥ X b e s t − F ( i ) ∥ × W (2) \begin{aligned}\Delta&=\bigl[R\times X_{\mathrm{rand}}-R\times F(i)\bigr]\times\left\|X_{\mathrm{best}}-F(i)\right\|\times W\end{aligned}\tag{2} Δ=[R×XrandR×F(i)]×XbestF(i)×W(2)
其中,Xrand为随机水流位置,Xbest为当代最优水流位置,W为非线性权重:
W = ( 1 − τ τ max ⁡ ) 2 × R N × ( R u × τ τ max ⁡ ) × R u (3) W=\left(1-\frac{\tau}{\tau_{\max}}\right)^{2\times R_{N}}\times\left(R_{\mathrm{u}}\times\frac{\tau}{\tau_{\max}}\right)\times R_{\mathrm{u}}\tag{3} W=(1τmaxτ)2×RN×(Ru×τmaxτ)×Ru(3)
其中,τ 和 τmax分别为当前迭代次数和最大迭代次数,Ru为均匀分布的随机向量。
更新水流位置
FDA算法中水流流向海拔最低的方向,若最优邻居N(k)的适应度fN(k)小于当前水流的适应度fF(i),则当前水流流向该邻居,此时新的水流位置为:
F n e w ( i ) = F ( i ) + v F ( i ) − N ( k ) ∥ F ( i ) − N ( k ) ∥ (4) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+v\frac{\boldsymbol{F}(i)-\boldsymbol{N}(k)}{\left\Vert\boldsymbol{F}(i)-\boldsymbol{N}(k)\right\Vert}\tag{4} Fnew(i)=F(i)+vF(i)N(k)F(i)N(k)(4)
其中,k为最优邻居的序号;v为水流速度,与坡度直接相关:
v = R N × S 0 ( i , k , D ) (5) v=R_\text{N}\times S_0(i,k,D)\tag{5} v=RN×S0(i,k,D)(5)
其中,S0(i,k,D)为最优邻居N(k)和水流F(i)位置之间的斜率为:
S 0 ( i , k , D ) = f F ( i ) − f N ( k ) ∥ F ( i , d ) − N ( k , d ) ∥ (6) S_0(i,k,D)=\frac{f_{\boldsymbol{F}(i)}-f_{\boldsymbol{N}(k)}}{\left\|F(i,d)-N(k,d)\right\|}\tag{6} S0(i,k,D)=F(i,d)N(k,d)fF(i)fN(k)(6)
如果随机水流的适应度优于当前水流的适应度,那么当前水流将沿着随机水流的方向流动。
F n e w ( i ) = F ( i ) + R N × [ F ( r ) − F ( i ) ] (7) \boldsymbol{F}_{\mathrm{new}}(i)=\boldsymbol{F}(i)+R_{\mathrm{N}}\times\left[\boldsymbol{F}(r)-\boldsymbol{F}(i)\right]\tag{7} Fnew(i)=F(i)+RN×[F(r)F(i)](7)
如果当前水流的适应度优于其最优邻居的适应度,根据适应度值来决定当前水流是沿着该随机水流的方向移动,还是沿着最优水流的方向移动。
F n e w ( i ) = F ( i ) + 2 R N × [ X b e s t − F ( i ) ] (8) \boldsymbol{F}_\mathrm{new}(i)=\boldsymbol{F}(i)+2R_\mathrm{N}\times\left[\boldsymbol{X}_\mathrm{best}-\boldsymbol{F}(i)\right]\tag{8} Fnew(i)=F(i)+2RN×[XbestF(i)](8)

流程图
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Karami H, Anaraki M V, Farzin S, et al. Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems[J]. Computers & Industrial Engineering, 2021, 156: 107224.

这篇关于【智能算法】流向算法(FDA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855350

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依