C++ Primer 5th笔记(chap 12 动态内存)shared_ptr

2024-03-28 10:08

本文主要是介绍C++ Primer 5th笔记(chap 12 动态内存)shared_ptr,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 相关概念

1.1 使用场景

• 程序不知道自己需要使用多少对象
• 程序不知道所需对象的准确类型
• 程序需要在多个对象间共享数据

1.2 实现原理

  • shared_ptr对象有一个关联的计数器,通常称为引用计数。
  • 某些操作会递增计数器,
    拷贝一个shared_ptr, 例如一个shared_ptr初始化另一个shared_ptr(作为函数参数, 作为函数返回值)
  • 某些操作计数器会递减
    给shared_ptr赋一个新值, shared_ptr被销毁时
  • 一旦一个shared_ptr的计数器变为0,它就会自动释放自己所管理的对象。

2. 主要操作

操作说明
make_shared(args)返回一个shared_ptr,指向一个动态分配的类型为T的对象。使用args初始化此对象
shared_ptr p(q)p是shared_ptr q的拷贝;此操作会递增q中的计数器。q中的智能指针必须转化为*T
p=qp和q都是shared_ptr,所保存的指针必须能够相互转换。此操作会递减p的引用计数,递增q的引用计数;若p的引用计数变为0,则将其管理的原内存释放
p.unique()若p.use_count()为1,返回true;否则返回false
p.use_count()返回与p共享对象的智能指针数量;可能很慢,主要用于调试

2.1 定义

eg.

shared_ptr<string> p1; //shared_ptr,可以指向string 
shared_ptr<list<int>> p2; //shared_ptr,可以指向int的list//使用make_shared函数
shared_ptr<int> p3 = make_shared<int>(42); 
shared_ptr<string> p4 = make_shared<string>(10, '9'); 
shared_ptr<int> p5 = make_shared<int>();
auto p6 = make_shared<vector<string>>();shared_ptr<string>sp;make_shared<string>();   //动态分配内存默认初始化,必须要有括号, 默认初始化得到的是空指针make_shared<string>("a");      //动态分配内存值初始化shared_ptr<string>sp2 = make_shared<string>();   //初始化智能指针shared_ptr<string>sp3 = make_shared<string>("b");//初始化智能指针//和new结合
shared_ptr<int> p1=new int(1024); //error
shared_ptr<int> p2(new int(1024)); //ok, 直接初始化形式。

2.2 copy和赋值

auto r = make_shared<int>(42); // r指向的int只有一个引用者
r = q;  
// r指向了q所指向的地址
// 递增q所指向对象的引用计数
// 递减r原来所指向对象的引用计数
// r原来所指向对象的引用计数为0,即没有引用者,自动释放

eg.

//传递参数会构造一个,计数器递增,函数运行结束后释放
shared_ptr<string> fun1(shared_ptr<string> sp5)
{auto sp6 = sp5;                            //创建临时并赋值,计数器递增。cout << "sp5 use_count:" << sp5.use_count() << endl;cout << "sp5 is_unique:" << sp5.unique() << endl;return sp6;
}      int main()
{shared_ptr<string>sp = make_shared<string>("aa");//通常使用auto来简化定义一个对象来保存make_shared的结果,这种方式比较简单。auto sp3 = make_shared<string>(10,'a');cout << "sp use_count:" << sp.use_count() << endl;auto sp2(sp);                          //拷贝sp,count计数会增加cout << "sp use_count:" << sp.use_count() << endl;cout << "sp is_unique:" << sp.unique() << endl;sp2 = sp3;                             //赋值sp2,计数会减少cout << "sp use_count:" << sp.use_count() << endl;cout << "sp is_unique:" << sp.unique() << endl;auto sp4(sp3);cout << "sp3 use_count:" << sp3.use_count() << endl;cout << "sp3 is_unique:" << sp3.unique() << endl;sp = sp3;//sp指向sp3指向的,sp指向的被销毁。cout << "sp use_count:" << sp.use_count() << endl;cout << "sp is_unique:" << sp.unique() << endl;auto sp7 = fun1(sp);                  cout << "sp7 use_count:" << sp.use_count() << endl;cout << "sp7 is_unique:" << sp.unique() << endl;   
}

输出结果:
在这里插入图片描述

3. 其它定义方法和reset方法

操作说明
shared_ptr p(q)p管理内置指针q所指的对象;q必须指向new分配的内存,且能够转换为T*类型
shared_ptr p(u)p从unique_ptr u中接管了对象的所有权;将u置为空
shared_ptr p(q,d)p接管了内置指针q所指向的对象的所有权。q必须能转换为T*类型。p将使用可调用对象d来代替delete
shared_ptr p(p2,d)p是shared_ptr p2的拷贝,唯一的区别是p将使用可调用对象d来代替delete
p.reset()若p是唯一指向其对象的shared_ptr,reset会释放此对象。
p.reset(q)释放原有对象的同时,若传递了可选的内置参数指针q,会令p指向q,否则会将p置为空
p.reset(q,d)若还传递了参数d,将会调用d而不是delete来释放q

注意: 尽量不要使用get初始化另一个智能指针或者为智能指针赋值,因为万一delete的话容易出错

        shared_ptr<int>p(new int(42));int* q = p.get();cout << "count:" << p.use_count() << *q << endl;// delete q; //error:{auto t = shared_ptr<int>(q); //转换   cout << "count:" << t.use_count() << endl;}int nVal = *p;cout << nVal << endl;if(!p.unique())p.reset(new string(*p)); //我们不是唯一的用户;分配新的拷贝*p+=newVal; //可以改变对象的值

5. 自定义删除器

 struct destination {};                //正在连接什么struct connection {
};class test2 {public:connection& connect(connection* s){cout << "正在连接..." << endl;s = new connection();return *s;}void static disconnect(connection* s){cout << "正在断开连接..." << endl;}void test(){connection p;connection* d = new connection();p = connect(d);//shared_ptr<connection>sp(&p,disconnect);   //error:lambda代表了删除函数。那么参数列表也要和删除函数一致,因为delete内部是free(p)。//shared_ptr<connection>sp(&p, [&p] { disconnect(&p); });shared_ptr<connection>sp(&p, [](connection* s) { disconnect(s); });} };

这篇关于C++ Primer 5th笔记(chap 12 动态内存)shared_ptr的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855312

相关文章

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域