nodejs 14.0.0源码分析之setTimeout

2024-03-27 21:32

本文主要是介绍nodejs 14.0.0源码分析之setTimeout,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这一篇我们来看看nodejs是如何实现定时器的。14.0.0的nodejs对定时器模块进行了重构,之前版本的实现是用一个map,以超时时间为键,每个键对应一个队列。即有同样超时时间的节点在同一个队列。每个队列对应一个底层的一个节点(二叉堆里的节点),nodejs在时间循环的timer阶段会从二叉堆里找出超时的节点,然后执行回答,回调里会遍历队列,哪个节点超时了。14.0.0重构后,只使用了一个二叉堆的节点。我们看一下他的实现。
我们先看下定时器模块的组织结构。
在这里插入图片描述
下面我们继续看一下定时器模块的几个重要的数据结果。

1 TimersList

超时时间一样的会被放到同一个队列,这个队列就是由TimersList来管理。对应图中的list那个方框。

// expiry是超时时间的绝对值。用来记录队列中最快到期的节点的时间,msecs是超时时间的相对值(相对插入时的当前时间) 
function TimersList(expiry, msecs) {// 用于链表this._idleNext = this; this._idlePrev = this; this.expiry = expiry;this.id = timerListId++;this.msecs = msecs;// 在优先队列里的位置this.priorityQueuePosition = null;
}

2 优先队列

const timerListQueue = new PriorityQueue(compareTimersLists, setPosition)

nodejs用优先队列对所有1中的链表进行管理,优先队列本质是一个二叉堆(小根堆),每个链表在二叉堆里对应一个节点。根据1中,我们知道每个链表都保存链表中最快到期的节点的过期时间。二叉堆以该事件为依据,即最快到期的list对应二叉堆中的根节点。我们判断根节点是否超时,如果没有超时,说明整个二叉堆的节点都没有超时。如果超时了,就需要不断遍历堆中的节点。

3 超时时间和链表的映射

1中已经提到,超时时间一样的节点,会排在同一个链表中个,nodejs中用一个map保存了超时时间到链表的映射关系。

了解完定时器整体的组织和基础数据结构,我们可以开始进入真正的源码分析了。

我们直接从setTimeout函数开始。

function setTimeout(callback, after, arg1, arg2, arg3) {if (typeof callback !== 'function') {throw new ERR_INVALID_CALLBACK(callback);}let i, args;switch (arguments.length) {// fast casescase 1:case 2:break;case 3:args = [arg1];break;case 4:args = [arg1, arg2];break;default:args = [arg1, arg2, arg3];for (i = 5; i < arguments.length; i++) {// Extend array dynamically, makes .apply run much faster in v6.0.0args[i - 2] = arguments[i];}break;}const timeout = new Timeout(callback, after, args, false, true);insert(timeout, timeout._idleTimeout);return timeout;
}

两个主要操作,new Timeout和insert。我们一个个来。

1 Timeout

function Timeout(callback, after, args, isRepeat, isRefed) {after *= 1; // Coalesce to number or NaNif (!(after >= 1 && after <= TIMEOUT_MAX)) {if (after > TIMEOUT_MAX) {process.emitWarning(`${after} does not fit into` +' a 32-bit signed integer.' +'\nTimeout duration was set to 1.','TimeoutOverflowWarning');}after = 1; // Schedule on next tick, follows browser behavior}// 超时时间相对值this._idleTimeout = after;// 前后指针,用于链表this._idlePrev = this;this._idleNext = this;// 定时器的开始时间this._idleStart = null;// This must be set to null first to avoid function tracking// on the hidden class, revisit in V8 versions after 6.2// 超时回调this._onTimeout = null;this._onTimeout = callback;// 执行回调时传入的参数this._timerArgs = args;// 是否定期执行回调,用于setIntervalthis._repeat = isRepeat ? after : null;this._destroyed = false;// 激活底层的定时器节点(二叉堆的节点),说明有定时节点需要处理if (isRefed)incRefCount();this[kRefed] = isRefed;initAsyncResource(this, 'Timeout');
}

Timeout主要是新建一个对象记录一些定时器的上下文信息。

2 insert(对照上面的图理解)

function insert(item, msecs, start = getLibuvNow()) {msecs = MathTrunc(msecs);// 记录定时器的开始时间,见Timeout函数的定义item._idleStart = start;// 该超时时间是否已经存在对应的链表let list = timerListMap[msecs];// 还没有if (list === undefined) {// 算出绝对超时时间const expiry = start + msecs;// 新建一个链表timerListMap[msecs] = list = new TimersList(expiry, msecs);// 插入优先队列timerListQueue.insert(list);// 算出下一次超时的时间,即最快到期的时间if (nextExpiry > expiry) {// 设置底层的最后超时时间,这样保证可以尽量按时执行scheduleTimer(msecs);nextExpiry = expiry;}}// 把当前节点加到队列里L.append(list, item);
}

scheduleTimer函数是对c++函数的封装。

void ScheduleTimer(const FunctionCallbackInfo<Value>& args) {auto env = Environment::GetCurrent(args);env->ScheduleTimer(args[0]->IntegerValue(env->context()).FromJust());
}void Environment::ScheduleTimer(int64_t duration_ms) {if (started_cleanup_) return;uv_timer_start(timer_handle(), RunTimers, duration_ms, 0);
}

uv_timer_start就是开启底层计时,即往libuv的二叉堆插入一个节点。超时时间是duration_ms,就是最快到期的时间,在timer阶段会判断是否过期。是的话执行RunTimers函数。我们先看一下该函数的主要代码。

Local<Function> cb = env->timers_callback_function();
ret = cb->Call(env->context(), process, 1, &arg);

RunTimers会执行timers_callback_function。timers_callback_function是在nodejs初始化的时候设置的。我们先暂定一下,看一下定时器模块的初始化流程。再回来这里分析。

nodejs在初始化的时候通过一下代码对定时器进行了初始化工作。

setupTimers(processImmediate, processTimers);

setupTimers对应的c++函数是

void SetupTimers(const FunctionCallbackInfo<Value>& args) {auto env = Environment::GetCurrent(args);env->set_immediate_callback_function(args[0].As<Function>());env->set_timers_callback_function(args[1].As<Function>());
}

nodejs把processTimers设置为超时的回调函数。现在我们知道了nodejs是如何设置超时的处理函数,也知道了什么时候会执行该回调。那我们就来看一下回调时具体处理逻辑。

void Environment::RunTimers(uv_timer_t* handle) {Local<Function> cb = env->timers_callback_function();MaybeLocal<Value> ret;Local<Value> arg = env->GetNow();do {// 执行js回调,即下面的processTimers函数ret = cb->Call(env->context(), process, 1, &arg);} while (ret.IsEmpty() && env->can_call_into_js());// 是否执行了所有的节点if (ret.IsEmpty())return;int64_t expiry_ms = ret.ToLocalChecked()->IntegerValue(env->context()).FromJust();uv_handle_t* h = reinterpret_cast<uv_handle_t*>(handle);// 还有超时节点,开块超时时间是expiry_ms ,需要重新插入底层的二叉堆。if (expiry_ms != 0) {// 算出下次超时的相对值int64_t duration_ms =llabs(expiry_ms) - (uv_now(env->event_loop()) - env->timer_base());// 重新把handle插入libuv的二叉堆env->ScheduleTimer(duration_ms > 0 ? duration_ms : 1);}
}

该函数主要是执行回调,然后如果还有没超时的节点,重新设置libuv定时器的时间。看看js层面。

  function processTimers(now) {nextExpiry = Infinity;let list;let ranAtLeastOneList = false;// 取出优先队列的根节点,即最快到期的节点while (list = timerListQueue.peek()) {// 还没过期,if (list.expiry > now) {nextExpiry = list.expiry;// 返回下一次过期的时间return refCount > 0 ? nextExpiry : -nextExpiry;}listOnTimeout(list, now);}return 0;}function listOnTimeout(list, now) {const msecs = list.msecs;debug('timeout callback %d', msecs);let ranAtLeastOneTimer = false;let timer;// 遍历具有统一相对过期时间的队列while (timer = L.peek(list)) {// 算出已经过去的时间const diff = now - timer._idleStart;// 过期的时间比超时时间小,还没过期if (diff < msecs) {// 整个链表节点的最快过期时间等于当前还没过期节点的值,链表是有序的list.expiry = MathMax(timer._idleStart + msecs, now + 1);// 更新id,用于决定在优先队列里的位置list.id = timerListId++;// 调整过期时间后,当前链表对应的节点不一定是优先队列里的根节点了,可能有他更快到期,即当前链表需要往下沉timerListQueue.percolateDown(1);return;}// 准备执行用户设置的回调,删除这个节点L.remove(timer);let start;if (timer._repeat)start = getLibuvNow();try {const args = timer._timerArgs;// 执行用户设置的回调if (args === undefined)timer._onTimeout();elsetimer._onTimeout(...args);} finally {// 设置了重复执行回调,即来自setInterval。则需要重新加入链表。if (timer._repeat && timer._idleTimeout !== -1) {// 更新超时时间,一样的时间间隔timer._idleTimeout = timer._repeat;// 重新插入链表insert(timer, timer._idleTimeout, start);} else if (!timer._idleNext && !timer._idlePrev && !timer._destroyed) {timer._destroyed = true;if (timer[kRefed])refCount--;}// 为空则删除if (list === timerListMap[msecs]) {delete timerListMap[msecs];timerListQueue.shift();}}

上面的代码主要是遍历优先队列,

  • 如果当前节点超时,即遍历他对应的链表。否则重新计算出最快超时时间,修改底层libuv的节点。即更新超时时间。
  • 遍历链表的时候如果遇到超时的则执行,如果没有超时的说明后面的节点也不会超时了。因为链表是有序的。修改链表的最快超时时间的值,调整他在优先队列的位置。因为超时时间变了。可能需要调整。

定时器模块的setTimeout分析完了,后面有机会的话再补充一下,另外setInterval是类似的。

这篇关于nodejs 14.0.0源码分析之setTimeout的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853452

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1