【AutoML】一个用于图像、文本、时间序列和表格数据的AutoML

2024-03-27 18:28

本文主要是介绍【AutoML】一个用于图像、文本、时间序列和表格数据的AutoML,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个用于图像、文本、时间序列和表格数据的AutoML

  • AutoGluon介绍
    • 安装AutoGluon
    • 快速上手
  • 参考资料

AutoGluon自动化机器学习任务,使您能够在应用程序中轻松实现强大的预测性能。只需几行代码就可以训练和部署有关图像,文本,时间序列和表格数据的高准确机器学习以及深度学习模型。

项目地址:https://github.com/autogluon/autogluon
AutoGluon
本文中的代码使用Google colab实现。

AutoGluon介绍

AutoGluon
AutoGluon: AutoML for Image, Text, Time Series, and Tabular Data
主要特点:

  • 快速原型制作:用几行代码在原始数据上构建机器学习解决方案。
  • 最先进的技术:无需专业知识即可自动利用SOTA模型。
  • 易于部署:从实验到生产云预测因子和预建装容器。
  • 可自定义:可扩展使用自定义功能处理,模型和指标。

快速上手:

pip install autogluon

安装AutoGluon

对于Linux操作环境,如果有GPU,则执行如下:

pip install -U pip
pip install -U setuptools wheel# Install the proper version of PyTorch following https://pytorch.org/get-started/locally/
pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 --index-url https://download.pytorch.org/whl/cu118pip install autogluon

快速上手

在本教程中将看到如何使用AutoGluon的TabularPredictor来预测基于表格数据集中其他列的目标列的值。

首先确保已安装AutoGluon,然后导入Autogluon的TabulardataTasetTabular Pressixor。我们将使用前者加载数据和后者来训练模型并做出预测。

!python -m pip install --upgrade pip
!python -m pip install autogluon

加载TabulardataTasetTabular Pressixor

from autogluon.tabular import TabularDataset, TabularPredictor

(1)示例数据
在本教程中将使用《自然》杂志第7887期封面故事中的数据集:人工智能引导的数学定理直觉。我们的目标是根据knot(绳结)的特性来预测它的特征。我们从原始数据中抽取了10K 训练和5K 测试的样本。采样的数据集使本教程快速运行,但是如果需要,AutoGluon 可以处理完整的数据集。

直接从URL加载此数据集。Autogluon的Tabulardataset是Pandas DataFrame的一个子类,因此也可以在TabulardatAset上使用任何Dataframe方法。

data_url = 'https://raw.githubusercontent.com/mli/ag-docs/main/knot_theory/'
train_data = TabularDataset(f'{data_url}train.csv')
train_data.head()

训练数据
我们的目标存储在“signature”列中,该列有18个独特的整数。即使pandas没有正确地将此数据类型识别为分类,Autogluon也会解决此问题。

label = 'signature'
train_data[label].describe()

count 10000.000000
mean -0.022000
std 3.025166
min -12.000000
25% -2.000000
50% 0.000000
75% 2.000000
max 12.000000
Name: signature, dtype: float64
(2)训练
现在,我们通过指定“signature”列名称,然后在数据集上使用TagularPredictor.fit()在数据集上进行训练。我们不需要指定任何其他参数。Autogluon将认识到这是一项多类分类任务,执行自动功能工程,训练多个模型,然后将模型集成以创建最终预测器

predictor = TabularPredictor(label=label).fit(train_data)

执行过程如下:

No path specified. Models will be saved in: "AutogluonModels/ag-20240326_144222"
No presets specified! To achieve strong results with AutoGluon, it is recommended to use the available presets.Recommended Presets (For more details refer to https://auto.gluon.ai/stable/tutorials/tabular/tabular-essentials.html#presets):presets='best_quality'   : Maximize accuracy. Default time_limit=3600.presets='high_quality'   : Strong accuracy with fast inference speed. Default time_limit=3600.presets='good_quality'   : Good accuracy with very fast inference speed. Default time_limit=3600.presets='medium_quality' : Fast training time, ideal for initial prototyping.
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20240326_144222"
=================== System Info ===================
AutoGluon Version:  1.0.0
Python Version:     3.10.12
Operating System:   Linux
Platform Machine:   x86_64
Platform Version:   #1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
CPU Count:          2
Memory Avail:       11.26 GB / 12.67 GB (88.9%)
Disk Space Avail:   41.86 GB / 78.19 GB (53.5%)
===================================================
Train Data Rows:    10000
Train Data Columns: 18
Label Column:       signature
AutoGluon infers your prediction problem is: 'multiclass' (because dtype of label-column == int, but few unique label-values observed).First 10 (of 13) unique label values:  [-2, 0, 2, -8, 4, -4, -6, 8, 6, 10]If 'multiclass' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Problem Type:       multiclass
Preprocessing data ...
Warning: Some classes in the training set have fewer than 10 examples. AutoGluon will only keep 9 out of 13 classes for training and will not try to predict the rare classes. To keep more classes, increase the number of datapoints from these rare classes in the training data or reduce label_count_threshold.
Fraction of data from classes with at least 10 examples that will be kept for training models: 0.9984
Train Data Class Count: 9
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...Available Memory:                    11534.85 MBTrain Data (Original)  Memory Usage: 1.37 MB (0.0% of available memory)Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.Stage 1 Generators:Fitting AsTypeFeatureGenerator...Note: Converting 5 features to boolean dtype as they only contain 2 unique values.Stage 2 Generators:Fitting FillNaFeatureGenerator...Stage 3 Generators:Fitting IdentityFeatureGenerator...Stage 4 Generators:Fitting DropUniqueFeatureGenerator...Stage 5 Generators:Fitting DropDuplicatesFeatureGenerator...Useless Original Features (Count: 1): ['Symmetry_D8']These features carry no predictive signal and should be manually investigated.This is typically a feature which has the same value for all rows.These features do not need to be present at inference time.Types of features in original data (raw dtype, special dtypes):('float', []) : 14 | ['chern_simons', 'cusp_volume', 'injectivity_radius', 'longitudinal_translation', 'meridinal_translation_imag', ...]('int', [])   :  3 | ['Unnamed: 0', 'hyperbolic_adjoint_torsion_degree', 'hyperbolic_torsion_degree']Types of features in processed data (raw dtype, special dtypes):('float', [])     : 9 | ['chern_simons', 'cusp_volume', 'injectivity_radius', 'longitudinal_translation', 'meridinal_translation_imag', ...]('int', [])       : 3 | ['Unnamed: 0', 'hyperbolic_adjoint_torsion_degree', 'hyperbolic_torsion_degree']('int', ['bool']) : 5 | ['Symmetry_0', 'Symmetry_D3', 'Symmetry_D4', 'Symmetry_D6', 'Symmetry_Z/2 + Z/2']0.1s = Fit runtime17 features in original data used to generate 17 features in processed data.Train Data (Processed) Memory Usage: 0.96 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.2s ...
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.1, Train Rows: 8985, Val Rows: 999
User-specified model hyperparameters to be fit:
{'NN_TORCH': {},'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],'CAT': {},'XGB': {},'FASTAI': {},'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif ...0.2232	 = Validation score   (accuracy)0.06s	 = Training   runtime0.02s	 = Validation runtime
Fitting model: KNeighborsDist ...0.2132	 = Validation score   (accuracy)0.04s	 = Training   runtime0.02s	 = Validation runtime
Fitting model: NeuralNetFastAI ...0.9459	 = Validation score   (accuracy)21.81s	 = Training   runtime0.02s	 = Validation runtime
Fitting model: LightGBMXT ...0.9459	 = Validation score   (accuracy)8.91s	 = Training   runtime0.21s	 = Validation runtime
Fitting model: LightGBM ...0.956	 = Validation score   (accuracy)6.37s	 = Training   runtime0.12s	 = Validation runtime
Fitting model: RandomForestGini ...0.9449	 = Validation score   (accuracy)5.6s	 = Training   runtime0.09s	 = Validation runtime
Fitting model: RandomForestEntr ...0.9499	 = Validation score   (accuracy)6.36s	 = Training   runtime0.1s	 = Validation runtime
Fitting model: CatBoost ...0.956	 = Validation score   (accuracy)57.69s	 = Training   runtime0.01s	 = Validation runtime
Fitting model: ExtraTreesGini ...0.9469	 = Validation score   (accuracy)2.16s	 = Training   runtime0.11s	 = Validation runtime
Fitting model: ExtraTreesEntr ...0.9429	 = Validation score   (accuracy)2.06s	 = Training   runtime0.16s	 = Validation runtime
Fitting model: XGBoost ...0.957	 = Validation score   (accuracy)11.36s	 = Training   runtime0.36s	 = Validation runtime
Fitting model: NeuralNetTorch ...0.9409	 = Validation score   (accuracy)41.09s	 = Training   runtime0.01s	 = Validation runtime
Fitting model: LightGBMLarge ...0.9499	 = Validation score   (accuracy)12.24s	 = Training   runtime0.33s	 = Validation runtime
Fitting model: WeightedEnsemble_L2 ...Ensemble Weights: {'NeuralNetFastAI': 0.22, 'RandomForestEntr': 0.22, 'ExtraTreesGini': 0.171, 'KNeighborsUnif': 0.122, 'RandomForestGini': 0.073, 'XGBoost': 0.073, 'LightGBMXT': 0.049, 'NeuralNetTorch': 0.049, 'LightGBMLarge': 0.024}0.966	 = Validation score   (accuracy)1.05s	 = Training   runtime0.0s	 = Validation runtime
AutoGluon training complete, total runtime = 181.72s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20240326_144222")

根据CPU型号模型拟合应花费几分钟或更短的时间。可以通过指定time_limit参数来更快地进行训练。例如,fit(..., time_limit=60)将在60秒后停止训练。较高的时间限制通常会导致更好的预测性能,并且过度较低的时间限制将阻止AutoGluon训练并结合一组合理的模型。
(3)预测
一旦有一个适合训练数据集的predictor,就可以加载一组数据集以用于预测和评估。

test_data = TabularDataset(f'{data_url}test.csv')y_pred = predictor.predict(test_data.drop(columns=[label]))
y_pred.head()

执行结果:

Loaded data from: https://raw.githubusercontent.com/mli/ag-docs/main/knot_theory/test.csv | Columns = 19 / 19 | Rows = 5000 -> 5000
0   -4
1    0
2    0
3    4
4    2
Name: signature, dtype: int64

(4)评估
我们可以使用evaluate()函数在测试数据集上评估predictor,该函数测量predictor在未用于拟合模型的数据上的表现。

predictor.evaluate(test_data, silent=True)

执行结果:

{'accuracy': 0.9462,'balanced_accuracy': 0.7437099196728706,'mcc': 0.9340692878044228}

Autogluon的TabularPredictor还提供了leaderboard()函数,这使我们能够评估每个经过训练的模型在测试数据上的性能。

predictor.leaderboard(test_data)

预测结果
(5)结论
在此教程中,我们看到了Autogluon的基本拟合度,并使用TabularDatasetTabularPredictor预测功能。Autogluon通过不需要特征工程或模型超参数调整来简化模型训练过程。

参考资料

  1. AutoGluon GitHub Repo: https://github.com/autogluon/autogluon
  2. AutoGluon 官方文档:https://auto.gluon.ai/stable/index.html
  3. AutoGluon Quick Start: https://colab.research.google.com/github/autogluon/autogluon/blob/stable/docs/tutorials/tabular/tabular-quick-start.ipynb#scrollTo=EQlCXX50IvBp

这篇关于【AutoML】一个用于图像、文本、时间序列和表格数据的AutoML的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/852989

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估