2014年认证杯SPSSPRO杯数学建模B题(第一阶段)位图的处理算法全过程文档及程序

本文主要是介绍2014年认证杯SPSSPRO杯数学建模B题(第一阶段)位图的处理算法全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2014年认证杯SPSSPRO杯数学建模

B题 位图的处理算法

原题再现:

  图形(或图像)在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形,位图则使用像素来描述图像。一般来说,照片等相对杂乱的图像使用位图格式较为合适,矢量图则多用于工程制图、标志、字体等场合。矢量图可以任意放缩,图形不会有任何改变。而位图一旦放大后会产生较为明显的模糊,线条也会出现锯齿边缘等现象。
  第一阶段问题: 矢量图从本质上只是使用曲线方程对图形进行的精确描述,在以像素为基本显示单元的显示器或打印机上是无法直接表现的。将矢量图转换成以像素点阵来表示的信息,再加以显示或打印,这个过程称之为栅格化(Rasterization),见图 1。
  栅格化的逆过程相对比较困难。假设有一个形状较为简单的图标,保存成一定分辨率的位图文件。我们希望将其矢量化,请你建立合理的数学模型,尽量准确地提取出图案的边界线条,并将其用方程表示出来。
在这里插入图片描述

整体求解过程概述(摘要)

  本次的问题是让我们处理栅格化逆过程,即根据位图图像像素点阵,得到矢量图形的几何特征,矢量图形本质上是使用曲线方程对图像进行精确描述,利用计算机辅助我们提取位图像素点阵特征,根据具体的拟合算法输出矢量图形。
  首先,我们仔细分析图形信息,对图像进行了灰度处理,即对图像去彩色化。通过观察图像的灰度直方图,我们发现灰度直方图有双峰特性,采用 ostu 算法对图像进行了分割以及区域二值化,我们尝试了多种边缘检测算子,通过画图比较决定使用ostu+canny算子的方式进行边缘提取。从而得到边缘数据点。
  然后,观察边缘数据点的分布情况,我们发现其在电脑内的存储状态没有构成点序列,出于对后面数据操作的便利,我们采用了 freeman 码的方式,对边界数据进行边缘跟踪,产生数据有序化,并在此过程中找出边界数据的突变点(尖点),为下一步的轮廓曲线拟合做准备。
  接着,我们对有序化的边界数据进行了两种方式的拟合。第一种是采用抛物线样条曲线拟合,在之前的步骤中,我们得到了图形边界的尖点信息,由于整个图形是封闭的,我们以这些尖点作为分段点,在分段点区间内进行抛物线样条拟合,拟合标准便是所有点的偏差最小。从而得到边界轮廓方程。采取的第二种方法是针对于题目所给图像的特征,我们采取了分段函数拟合的办法,第一部分采用椭圆拟合的方式;第二部分是图形下部尖端部分,我们采用多项式拟合方式,最终得到边界图与边界方程。第一种方法具有一定的普适性,可以应用于任意形状的图形的拟合,拟合效果较为理想;第二种方法具有特殊性,针对有特定图像的拟合效果相对更好。
  随后,在得到边界拟合曲线的基础上,我们综合比较了现在较为主流的种子填充算法和扫描线填充算法,并根据此次问题实际情况,提出了改进版本的扫描线填充算法,在进行边界内部填充的过程中,我们针对难填充的区域进行了区域划分,使得每一个区域都能够完美填充。
  最后,我们考虑到图形程序较为复杂,与人的交互性较差,我们采用了简单的 matlab gui 界面方式对部分程序结果进行了统一展示,提高了程序的可视化以及人机交互性。

问题分析:

  这次的问题是栅格化的逆过程,也即是从位图到矢量化图形的过程。由于位图计算机存储的是每个像素点的信息,而矢量图形计算机存储的是其几何特征。所以在栅格化逆过程中我们必须要考虑位图图像的几何特征,并想办法提取这些几何特征。对于一个封闭图形,我们如果能够知道图形的边界方程、线条的粗细以及颜色,那么我们最后的工作就是展现这些特征所标识的矢量图形。
  图形的边界方程的获取一般会涉及边界区域的确定,进而得到边界数据点,并将数据点有序化。一般对于边界的拟合有多边形近似、样条插值拟合和分段函数拟合,而大部分拟合方法要求数据的有序化。
  线条的粗细可以根据边界提取后的边界数据来确定,而颜色可以通过对于位图像素点的提取来确定。

模型假设:

  假设 1:照片像素在 MATLAB 的处理范围内。
  假设 2:填充的图形是封闭的,如果边缘本身有断点,用函数 bwfill 进行“补洞”操作;
  假设 3:对于图片的比较微细小的部分,用膨胀函数 dilate 进行原图膨胀。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function cl=clusterp(pic)
a=pic;
count=imhist(a);
[m,n]=size(a);
N=m*n;
L=256;
count=count/N;
for i=1:L
if count (i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count (i)~=0
nd=i-1;
break;
end
end
F=count(st+1:nd+1); 
p=st; 
q=nd-st;
u=0;
for i=1:q
u=u+f(i)*(p+i-1); 
ua(i)=u;
end;
for i=1:q
w(i)=sum(f(1:i)); 
end;
d=(u*w-ua).^2./(w.*(1-w));
[y,tp]=max(d); 
th=tp+p;
for i=1:m
for j=1:n
if a(i,j)<th
a(i,j)=0;
else
a(i,j)=255;
end
end
end
imshow(a);
clear all
clc
F=imread('C:\Users\pc\Desktop\gui\图片1.png');
F1=rgb2gray(F);
F2=im2bw(F1);
m1=edge(F2,'canny');
m2=edge(F2,'sobel');
m3=edge(F2,'roberts');
m4=edge(F2,'log');
m5=bwperim(F2,4);
F=rgb2gray(F);
m6=F;
count=imhist(m6);
[m,n]=size(m6);
N=m*n;
L=256;
count=count/N;
for i=1:L
if count(i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count(i)~=0
nd=i-1;
break;
end
end
f=count(st+1:nd+1); 
p=st; 
q=nd-st;
u=0;
for i=1:q
u=u+f(i)*(p+i-1); 
ua(i)=u;
end;
for i=1:q
w(i)=sum(f(1:i)); 
end;
d=(u*w-ua).^2./(w.*(1-w));
[y,tp]=max(d); 
th=tp+p;
for i=1:m
for j=1:n
if m6(i,j)<th
m6(i,j)=0;
else
m6(i,j)=255;
end
end
end
subplot(2,2,2);
imshow(m6);
subplot(2,2,3);m6=edge(m6,'canny');
imshow(m6);
m11=imcomplement(m1);
m21=imcomplement(m2);
m31=imcomplement(m3);
m41=imcomplement(m4);
m51=imcomplement(m5);
[L,W]=size(m51);
m51(:,1)=1;m51(:,W)=1;m51(1,:)=1;m51(L,:)=1;
m61=imcomplement(m6);
subplot(2,3,1),imshow(m11),title('canny算子')
subplot(2,3,2),imshow(m21),title('sobel算子')
subplot(2,3,3),imshow(m31),title('roberts算子')
subplot(2,3,4),imshow(m41),title('log算子')
subplot(2,3,5),imshow(m51),title('bwperim')
subplot(2,3,6),imshow(m61),title('ostu+canny算子')
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2014年认证杯SPSSPRO杯数学建模B题(第一阶段)位图的处理算法全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851866

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避