基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真

本文主要是介绍基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于GA遗传优化的离散交通网络双层规划模型设计.优化输出路段1和路段2的收费情况收敛过程。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.....................................................................
while gen < MAXGEN;   rng(gen)genP1 = 0.9;P2 = 1-P1;FitnV=ranking(Objv);    Selch=select('sus',Chrom,FitnV);    Selch=recombin('xovsp', Selch,P1);   Selch=mut( Selch,P2);   phen1=bs2rv(Selch,FieldD);   for a=1:1:NIND  if  gen == 1Cost1(a) = Cost1_intial;       Cost2(a) = Cost2_intial;               elseCost1(a) = phen1(a,1);   Cost2(a) = phen1(a,2);   end%计算对应的目标值[errs,a1,a2,eas,tas,xa3] = func_obj(Cost1(a),Cost2(a));E               = errs;JJ(a,1)         = E;end Objvsel      =(JJ+eps);    [Chrom,Objv] = reins(Chrom,Selch,1,1,Objv,Objvsel);   gen          = gen+1; %保存参数收敛过程和误差收敛过程以及函数值拟合结论Cost1gen(gen) = mean(Cost1);Cost2gen(gen) = mean(Cost2); F(gen)        = mean(JJ);if gen <=32F2(gen)        = mean(F(1:gen));Cost1gen2(gen) = mean(Cost1gen(1:gen));Cost2gen2(gen) = mean(Cost2gen(1:gen));elseF2(gen)        = mean(F(gen-32:gen)); Cost1gen2(gen) = mean(Cost1gen(gen-32:gen));Cost2gen2(gen) = mean(Cost2gen(gen-32:gen));end
end Cost1f = Cost1gen(end);   
Cost2f = Cost2gen(end);   figure;
plot(F2(2:end),'linewidth',2);
xlabel('迭代次数');
ylabel('上层目标函数');
grid onfigure;
plot(Cost1gen2(2:end),'r','linewidth',2);
hold on
plot(Cost2gen2(2:end),'b','linewidth',2);
xlabel('迭代次数');
ylabel('收费情况');
legend('路段1','路段2');
grid ondisp('流量');
eas
06_029m

4.本算法原理

1. 使用一氧化碳作为路网车辆尾气排放的代表指标,计算公式如下:

2. 双层规划模型
上层模型
采用多目标模型,系统总出行时间最小,同时区域排放最小

3.下层模型

采用固定需求的用户平衡(UE),总阻抗最小

N——网络中节点的集合;

L——网络中路段的集合;

R——网络中出发地的集合;

S——网络中目的地的集合;

 ——出发地 和目的地 之间的所有径路的集合;

 ——出发地 和目的地 之间的OD交通量;

5.完整程序

VVV

这篇关于基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851789

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索