[自研开源] 数据集成之分批传输 v0.7

2024-03-27 09:52

本文主要是介绍[自研开源] 数据集成之分批传输 v0.7,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开源地址:gitee | github
详细介绍:MyData 基于 Web API 的数据集成平台
部署文档:用 Docker 部署 MyData
使用手册:MyData 使用手册
试用体验:https://demo.mydata.work
交流Q群:430089673

介绍

本篇基于 数据集成之任务流程 介绍任务分批传输的使用场景和配置操作。

使用场景

mydata使用API方式集成数据,当一次请求或响应 传输数据量较多时 可能无法完成、或容易对服务端造成影响,因此需要分为多次处理;

例如 常见的分页查询、导入大量数据时分批处理、集成对接时的全量同步等;

分批传输数据

业务系统与mydata集成时,在提供数据消费数据这两个方向上分别实现分批传输;

提供数据

由mydata调用应用的API获取数据,通过配置分批参数 实现一次任务内多次调用API获取完整数据,有以下两种基本的配置模式:

  • 配置了 固定参数size=10、递增参数current从1开始每次递增1、每次间隔1秒的任务;

在这里插入图片描述

  • 配置了 递增参数start从1开始每次递增100、递增参数end从100开始每次递增100、每次间隔1秒的任务;

在这里插入图片描述

执行过程如下代码,要点有:

  • 通过do-while结构 兼容单次和分批;

  • lastProduceData记录上一次数据,用于和本次对比数据,若重复 则结束,避免死循环(理论上很少有2次完全一样的数据);

  • 若分批有异常,则复用任务3次出错 自动结束并发送邮件通知的功能;

  • 执行完一次后,自动计算递增参数值;

// 提供数据
case MdConstant.DATA_PRODUCER:// 分批模式 记录上一次数据,用于对比两次数据,若重复 则结束,避免死循环List<Map> lastProduceData = null;do {// 若启用分批,则将分批参数加入请求参数中if (taskInfo.isBatch()) {Map<String, Object> batchParam = jobBatchService.parseToMap(taskInfo);Map<String, Object> reqParams = MapUtil.union(taskInfo.getReqParams(), batchParam);taskInfo.setReqParams(reqParams);}// 调用api 获取jsonString json = ApiUtil.read(taskInfo);// 将json按字段映射 解析为业务数据jobDataService.parseData(taskInfo, json);// 若没有返回数据,则结束处理if (CollUtil.isEmpty(taskInfo.getProduceDataList())) {break;}// 对比上一次数据if (lastProduceData != null) {if (CollUtil.isEqualList(lastProduceData, taskInfo.getProduceDataList())) {// 异常任务失败,邮件通知用户检查任务throw new RuntimeException("分批获取数据异常,最后两次获取的数据相同!");}}lastProduceData = taskInfo.getProduceDataList();// 根据条件过滤数据jobDataFilterService.doFilter(taskInfo);// 保存业务数据jobDataService.saveTaskData(taskInfo);// 更新环境变量jobVarService.saveVarValue(taskInfo, json);// 递增分批参数jobBatchService.incBatchParam(taskInfo);// 若启用分批,则等待间隔if (taskInfo.isBatch()) {ThreadUtil.sleep(taskInfo.getBatchInterval(), TimeUnit.SECONDS);}} while (taskInfo.isBatch());break;

消费数据

由mydata通过API向应用发送数据,通过配置分批参数 限制每次向API发送的数据量,从而减少数据查询量和请求处理时间;

如下图,配置了分批数量为1000的任务,分批参数为选填,mydata将按1000为限制查询符合条件的数据,通过API请求发送给应用;

在这里插入图片描述

执行过程如下代码,要点有:

  • 通过do-while结构 兼容单次和分批;
  • 自动管理分页参数,执行分页查询数据,发送给API;
  • 直到分页查询没有数据 自动结束;
// 消费数据
case MdConstant.DATA_CONSUMER:String dataCode = taskInfo.getDataCode();if (StrUtil.isEmpty(dataCode)) {break;}List<BizDataFilter> filters = taskInfo.getDataFilters();if (CollUtil.isNotEmpty(filters)) {// 解析过滤条件值中的 自定义字符串parseFilterValue(filters);// 排除值为null的条件filters = filters.stream().filter(filter -> filter.getValue() != null).collect(Collectors.toList());}int round = 0;Long skip = null;Integer limit = taskInfo.isBatch() ? taskInfo.getBatchSize() : null;do {if (taskInfo.isBatch()) {skip = (long) round * taskInfo.getBatchSize();}// 根据过滤条件 查询数据List<Map> dataList = bizDataDAO.list(MdUtil.getBizDbCode(taskInfo.getTenantId(), taskInfo.getProjectId(), taskInfo.getEnvId()), dataCode, filters, skip, limit);if (CollUtil.isEmpty(dataList)) {break;}taskInfo.setConsumeDataList(dataList);// 根据字段映射转换为api参数jobDataService.convertData(taskInfo);// 调用api传输数据ApiUtil.write(taskInfo);round++;// 若启用分批,则等待间隔if (taskInfo.isBatch()) {ThreadUtil.sleep(taskInfo.getBatchInterval(), TimeUnit.SECONDS);}}while (taskInfo.isBatch());break;

这篇关于[自研开源] 数据集成之分批传输 v0.7的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851706

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2