前端面试拼图-数据结构与算法(二)

2024-03-27 02:04

本文主要是介绍前端面试拼图-数据结构与算法(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:最近,看了下慕课2周刷完n道面试题,记录下...

1. 求一个二叉搜索树的第k小值

        二叉树(Binary Tree)

        是一棵树

        每个节点最多两个子节点

        树节点的数据结构{value, left?, right?}

        二叉树的遍历

        前序遍历:root→left→right

        中序遍历:left→root→right

        后序遍历:left→right→root

        二叉搜索树BST(Binary Search Tree)

        left(包括其后代) value ≤ root value

        right (包括其后代) value ≥ root value

        可使用二分法进行快速查找

        解题思路:BST中序遍历,从小到大的排序

                          找到排序后的第k个值

/**
* 二叉搜索树
*/
interface ITreeNode {value: numberleft: ITreeNode | nullright: ITreeNode | null
}const arr: number[] = []/**
* 二叉树前序遍历
*/
function preOrderTraverse(node: ITreeNode | null) {if ( node == null) return//console.log(node.value)arr.push(node.value)preOrderTraverse(node.left)preOrderTraverse(node.right)
}/**
* 二叉树中序遍历
*/
function inOrderTraverse(node: ITreeNode | null) {if ( node == null) returninOrderTraverse(node.left)// console.log(node.value)arr.push(node.value)inOrderTraverse(node.right)
}/**
* 二叉树后序遍历
*/
function postOrderTraverse(node: ITreeNode | null) {if ( node == null) returnpostOrderTraverse(node.left)postOrderTraverse(node.right)// console.log(node.value)arr.push(node.value)
}/**
* **寻找BST中的第k小值**
*/
function getKthValue(node: ITreeNode, k: number): number | null {inOrderTraverse(node)console.log(arr)return arr[k-1] || null
}const bst: ITreeNode = {value: 5,left: {value: 3,left: {value: 2,left: null,right: null},right: {value: 4,left: null,right: null}},right: {value: 7,left: {value: 6,left: null,right: null},right: {value: 8,left: null,right: null}}
}//preOrderTraverse(tree)

平衡二叉树 | HZFE - 剑指前端 Offer题目描述icon-default.png?t=N7T8https://febook.hzfe.org/awesome-interview/book1/algorithm-balanced-binary-trees        扩展:为何二叉树如此重要,而不是三叉树、四叉树?

        性能、性能、还是性能!重要的事情说三遍

        数组:查找快O(1),增删慢O(n);链表:查找慢O(n),增删快O(1)

        二叉搜索树BST:查找快、增删快—"木桶效应"

        平衡二叉树

        BST如果不平衡,那就又成了链表

        所以要尽量平衡:平衡二叉搜索树BBST(其增删查,时间复杂度都是O(logn),即树的高度)

        红黑树:本质是一种自平衡二叉树

        分为红/黑两种颜色,通过颜色转换来维持输的平衡

        相对于普通平衡二叉树,它维持平衡的效率更高

        B树

        物理上是多叉树,但逻辑上是二叉树

        一般用于高效I/O, 关系型数据库常用B树 来组织数据

        扩展2:堆有什么特点?和二叉树又什么关系?

        堆栈模型

        JS执行时,值类型变量,存储在栈中;引用类型变量,存储在堆中

        堆是完全二叉树

        最大堆:父节点 ≥子节点

        最小堆:父节点≤子节点

        满二叉树(又叫完美二叉树):所有层的节点都被填满;

        完全二叉树:最底层节点靠左填充,其它层节点全被填满

7.1   二叉树 - Hello 算法动画图解、一键运行的数据结构与算法教程icon-default.png?t=N7T8https://www.hello-algo.com/chapter_tree/binary_tree/#1_1        逻辑结构 VS 物理结构

        堆:逻辑结构是一颗二叉树,但它的物理结构式一个数组

        堆的使用场景

        特别适合"堆栈模型"

        堆的数据,都是在栈中引用的,不需要从root遍历

        堆恰巧是数组形式,根据栈的地址,可用O(1)找到目标

2. JS计算斐波那契数列的第n个值

/**
* 斐波那契额数列(递归)
*/
function fibonacci(n:number): number{if(n <=1 ) return nreturn fibonacci(n-1) + fibonacci(n-2)
}

        递归有大量重复计算,其时间复杂度是O(2^n)

        优化:不用递归用循环,记录中间结果,时间复杂度O(n)

/**
* 斐波那契额数列(循环)
*/
function fibonacci(n:number): number{if(n <=1 ) return nlet n1 = 1  //记录n-1的结果let n2 = 0  //记录n-2的结果let res = 0for(let i = 2; i <= n; i++) {res = n1 + n2;// 记录中间结果n2 = n1n1 = res} return res
}

        动态规划:

        把一个大问题,拆解为一个小问题,逐级向下拆解

        用递归的思想去分析问题,再改用循环来实现

        算法三大思维:贪心、二分、动态规划

        扩展:青蛙跳台阶问题,一只青蛙,一次可跳1级,也可跳两级,请问青蛙跳到n级台阶,总共有多少种方式?

        第一次跳1级则有f(n-1)种方式,跳2级则有f(n-2)种方式,则结果和斐波那契额数列一样。

3. 将数组的0 移动到末尾

        如输入[1,0,3,0,11,0],输出[1,3,11,0,0,0],只移动0,其他顺序不变;必须在原数组进行操作

        传统思路

        遍历数组,遇到0则push到数组末尾

        用splice截取当前元素

        时间复杂度O(n^2)—算法不可用

        数组是连续存储,要慎用splice unshift 等API

/**
* 移动0到数组末尾(嵌套循环)
*/
function moveZero1(arr:number[]):void {const length = arr.lengthif(length === 0) returnlet zeroLength = 0// **O(n^2)**for (let i = 0; i < length - zeroLength; i++) {if (arr[i] === 0) {arr.push(0)arr.splice(i,1)  // 本身就有O(n)i-- //数组接去了一个元素,i要递减,否则连续0就会有错误zeroLength++ // 累加0的长度}}
}

        双指针思路(解决嵌套循环的有效)

        定义j指向第一个0,i指向j后面的第一个非0

        交换i和j的值,继续向后移动

        只遍历一次,所以时间复杂度是O(n)

/**
* 移动0到数组末尾(双指针)
*/
function moveZero2(arr:number[]):void {const length = arr.lengthif(length === 0) returnlet ilet j = -1 // 指向第一个0for(i=0; i < length; i++) {if(arr[i] === 0) {if (j < 0) {   // 第一个0j = i}}if(arr[i] !== 0 && j >=0 ) {const n = arr[i]arr[i] = arr[j]arr[j] = nj++}}
}

4. 获取字符串中连续最多的字符,以及次数

        如输入'abbcccddeeee1234',计算得到连输最多的字符是'e',为4次

        传统思路

        嵌套循环,找出每个字符的连续次数,并记录

        看似时间复杂度是O(n^2)

        但实际时间复杂度是多少?—O(n),因为有'跳步'

/**
* 求连续最多的字符和次数(嵌套循环)
*/
interface IRes {char: stringlength: number
}
function findContinuousChars1(str:string):IRes {const res:IRes = {char: '',length: 0}const length = str.lengthif (length === 0) return reslet tempLength = 0 //临时记录当前连续字符串的长度// 时间复杂度O(n)for(let i = 0; i < length; i++) {tempLength = 0 // 重置for(let j = i; j < length; j++) {if (str[i] === str[j]) {tempLength++}if(str[i] !== str[j] || j === length-1) {// 不相等,或者已经到最后一个元素。要去判断最大值if (tempLength > res.length) {res.char = str[i]res.length = tempLength}if (i < length - 1) {i = j -1   // 跳步}break}}}  return res
}

        双指针思路(适用于解决嵌套循环类问题)

        定义指针i和j;j不动,i继续移动

        如果i和j的值一直相等,则i继续移动

        直到i和j的值不相等,记录处理,让j追上i。继续第一步

/**
* 求连续最多的字符和次数(双指针)
*/
interface IRes {char: stringlength: number
}
function findContinuousChars2(str:string):IRes {const res:IRes = {char: '',length: 0}const length = str.lengthif (length === 0) return reslet tempLength = 0 //临时记录当前连续字符串的长度// 时间复杂度O(n)let i = 0let j = 0for(; i < length; i++) {if(str[i] === str[j]) {tempLength++}if(str[i] !== str[j] || i === length-1) {// 不相等,或者i到了字符串的末尾if(tempLength > res.length) {res.char = str[j]res.length = tempLength}tempLength = 0  //重置长度if(i < length - 1) {j = i //让j"追上" ii--}}}return res
}

ps:算法题尽量使用低级的代码,慎用语法糖或者高级API

5. 用JS实现快速排序,并说明时间复杂度

6. 获取1-10000之前所有的对称数

7. 如何实现高效的英文单词前缀匹配

未完待续……

这篇关于前端面试拼图-数据结构与算法(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850597

相关文章

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

前端CSS Grid 布局示例详解

《前端CSSGrid布局示例详解》CSSGrid是一种二维布局系统,可以同时控制行和列,相比Flex(一维布局),更适合用在整体页面布局或复杂模块结构中,:本文主要介绍前端CSSGri... 目录css Grid 布局详解(通俗易懂版)一、概述二、基础概念三、创建 Grid 容器四、定义网格行和列五、设置行

前端下载文件时如何后端返回的文件流一些常见方法

《前端下载文件时如何后端返回的文件流一些常见方法》:本文主要介绍前端下载文件时如何后端返回的文件流一些常见方法,包括使用Blob和URL.createObjectURL创建下载链接,以及处理带有C... 目录1. 使用 Blob 和 URL.createObjectURL 创建下载链接例子:使用 Blob

Vuex Actions多参数传递的解决方案

《VuexActions多参数传递的解决方案》在Vuex中,actions的设计默认只支持单个参数传递,这有时会限制我们的使用场景,下面我将详细介绍几种处理多参数传递的解决方案,从基础到高级,... 目录一、对象封装法(推荐)二、参数解构法三、柯里化函数法四、Payload 工厂函数五、TypeScript

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各